
OOP

Oblikovni obrasci

kratki pregled

• Što je ideja oblikovnih obrazaca

• SOLID principi

• Adapter, Factory, Singleton primjer

U ovom poglavlju naučit ćete

• a general repeatable solution to a commonly occurring problem

• drafts of solutions, not their implementation

• tested, proven approach paradigms

• speed up application development

• increase the readability of the code

• reduce the need for changes

• must not be purpose in itself

Oblikovni obrasci

• John Lennon: "There are no problems, only
solutions"

• We solve problems that have had to solve
countless time before

• Knowledge of patterns => breaking down
complex solutions, develop applications in
uniformed way with TRIED and TRUSTED
solutions

Intro – design patterns

• Design pattern (DP) = high-level abstract solution
templates

• Language agnostic

• Origin: C. Alexander, 1970, architecture

• Origin in software development: Design Patterns:
Elements of Reusable Object-Oriented Software (GoF)
• 23 design patterns, 3 groups

Intro – design patterns (2)

GoF

• Keep It Simple Stupid (KISS)

• Don’t Repeat Yourself (DRY)

• You Ain’t Gonna Need It (YAGNI)

• Separation of Concerns (SoC)

• Liskov Substitution Principle (LSP)

• Interface Segregation Principle (ISP)

• Dependency Inversion Principle (DIP)

• Dependency Injection (DI) and Inversion of
Control (IoC)

Common design principles

•Single Responsibility Principle (SRP)

•Open-Closed Principle (OCP)

•Liskov Substitution Principle (LSP)

• Interface Segregation Principle (ISP)

•Dependency Inversion Principle (DIP)

S.O.L.I.D design principles

• Responsibility is considered to be one reason
to change

• If we have 2 reasons to change for a class, we
have to split the functionality in two classes

• A class should have only one reason to change.

Single Responsibility Principle (SRP)

• Design and writing of the code should be done
in a way that new functionality should be
added with minimum changes in the existing
code.

• The design should be done in a way to allow
the adding of new functionality as new classes,
keeping as much as possible existing code
unchanged.

• Software entities like classes, modules and
functions should be open for
extension but closed for modifications.

Open Closed Principle (OCP)

Open Closed Principle(2) – bad example

Open Closed Principle(3) – good example

• All the time we design a program module and
we create some class hierarchies. Then we
extend some classes creating some derived
classes

• We must make sure that the new derived
classes just extend without replacing the
functionality of old classes. Otherwise the new
classes can produce undesired effects when
they are used in existing program modules.

• Derived types must be completely
substitutable for their base types.

Liskov's Substitution Principle (LSP)

• Clients should not be forced to implement
interfaces they don't use.

• Instead of one fat interface many small
interfaces are preferred based on groups of
methods, each one serving one submodule.

• Clients should not be forced to depend upon
interfaces that they don't use.

Interface Segregation Principle (ISP)

• High-level modules should not depend on
low-level modules. Both should depend on
abstractions.

• Abstractions should not depend on details.
Details should depend on abstractions.

• Repeat that ☺

Dependency Inversion Principle (DIP)

• Kreacijski predlošci
• Singleton

• Factory

• Abstract Factory

• Factory Nethod

• Builder

• Prototype

• Object Pool

Podjela dizajnerskih predložaka

• Strukturalni predlošci
• Facade

• Adapter

• Bridge

• Composite

• Decorator

• Flyweight

• Proxy

Podjela dizajnerskih predložaka

• Predlošci ponašanja
• Chain of Responsibility

• Command

• Interpreter

• Iterator

• Mediator

• Memento

• Observer

• Strategy

Podjela dizajnerskih predložaka

• Predlošci ponašanja
• Template Method

• Visitor

• Null Object

Podjela dizajnerskih predložaka(2)

• Cilj: Osigurati da će se kreirati samo jedna (N)
instanca neke klase

Singleton

• Gdje ga koristiti?
• Logiranje

• Konfiguracijske klase

• „Factories”

Singleton(2)

• Cilj: Kreirati objekte bez da se logika kreiranja
prikazuje klijentu

Factory

• Gdje ga koristiti?
• Gdje ne ☺

• Vjerojatno najčešće korišteni predložak u OOP rješenjima

• Tipični problemi
• Parametrizirani „Factory”

Factory(2)

• Gdje ga koristiti?

• Suradnja između klasa koje inače ne bi mogle raditi
zajedno zbog inkompatibilnosti njihovih sučelja

Adapter

Adapter

Hvala na pažnji!

	Slide 1: OOP
	Slide 2: U ovom poglavlju naučit ćete
	Slide 3: Oblikovni obrasci
	Slide 4: Intro – design patterns
	Slide 5: Intro – design patterns (2)
	Slide 6: GoF
	Slide 7: Common design principles
	Slide 8: S.O.L.I.D design principles
	Slide 9: Single Responsibility Principle (SRP)
	Slide 10: Open Closed Principle (OCP)
	Slide 11: Open Closed Principle(2) – bad example
	Slide 12: Open Closed Principle(3) – good example
	Slide 13: Liskov's Substitution Principle (LSP)
	Slide 14: Interface Segregation Principle (ISP)
	Slide 15: Dependency Inversion Principle (DIP)
	Slide 16: Podjela dizajnerskih predložaka
	Slide 17: Podjela dizajnerskih predložaka
	Slide 18: Podjela dizajnerskih predložaka
	Slide 19: Podjela dizajnerskih predložaka(2)
	Slide 20: Singleton
	Slide 21: Singleton(2)
	Slide 22: Factory
	Slide 23: Factory(2)
	Slide 24: Adapter
	Slide 25: Adapter
	Slide 26: Hvala na pažnji!

