a

Postgres funkcionalnosti ALGEBRA

Pristup podacima iz programskog koda
25/26

Ishod ucenja 1

31. listopada 2025. Borna Skraci¢ @ Algebra

Sadrzaj

(1)
(2)

(3)

SQL - podsjetnik
Podatkovni tipovi
Sequence
Indeksi
Transakcije
Docker setup

Primjeri

Strukturirani jezik upita - SQL

(1) DDL (Data Definition Language)
CREATE, DROP, ALTER
(2) DML (Data Modifying Language)
CRUD operacije (INSERT, SELECT, UPDATE, DELETE)
filtracija (WHERE) i sortiranje (ORDER BY)
agregatne funkcije (AVG, COUNT, SUM, MIN, MAX) s grupiranjem (GROUP BY)

SQL funkcije

CREATE OR REPLACE FUNCTION species_category(sp_name TEXT) RETURNS TEXT
AS $$

BEGIN
IF sp_name ILIKE 'a%' THEN RETURN 'Group A';
ELSIF sp_name ILIKE 'b%' THEN RETURN 'Group B';
ELSE RETURN 'Other’';
END IF;
END;
S§S LANGUAGE plpgsql IMMUTABLE;
-- Funkcije mogu biti IMMUTABLE, STABLE i VOLATILE (ovisno o kontekstu koristenja)

Podatkovni tipovi

Za izradu ORM-a, potrebno je izvesti mapiranje osnovnih Postgres podatkovnih tipova na
programske podatkovne tipove, npr.

+ varchar(255) = string

+ bigint = long

+ Timestamp [without time zone] = DateTime
+

Dobro prouciti podatkovne tipove dostupne u Postgresu:
+ https://www.postgresqgl.org/docs/current/datatype.html

https://www.postgresql.org/docs/current/datatype.html%E2%80%8B

Postgres sekvenca

Objekt u bazi podataka koji osigurava autoinkrementalno generiranje nove vrijednosti (najcescée za
primarni kljuc).

Funkcije:
nextval(‘seq’)
- inkrementira i vraca sljedecu vrijednost

currval(‘seq’)
- posljednja vrijednost koristena u ovoj sesiji

setval(‘seq’, N)
-> postavlja vrijednost sekvence na N

Od PG 10+, identity stupci (GENERATED ALWAYS AS IDENTITY) se preferiraju nad SERIAL
tipovima.

Postgres sekvenca

Kreirana implicitno kada se koristi SERIAL podatkovni tip ili eksplicitno putem CREATE SEQUENCE

+ U pozadini je sadrzan brojaC u kataloskoj relaciji koji je pohranjen u pg_sequence sistemskom
katalogu

+ jednom kada je vrijednost inkrementirana, ista je izgubljena Cak i ako je transkacija ponistena
(eng. rollback) — osigurava jedinstvenost

Indeksi

Indeksi se koriste kada Zelimo poboljSati performanse upita pretrage i/ili sortiranja podataka iz
tablice. U pozadini se stvara B-stablo struktura podataka (binarno stablo pretrage) koja
omogucuje binarno petrazivanje u vremenskoj slozenosti ~0(1logn).

Default ponasanje je linearna pretraga (eng. sequential scan).

CREATE INDEX name ON table [USING <algorithm>] (column, <..>)

+ B-Tree
Podrzani operatori: <, <=, =, >=, >
+ GIN
full-text search / JSONB /arrays
+ GIiST
geometric, full-text search
+ BRIN
veliki sekvencijski podaci (primjer: time-series)
+ Hash

usporedbe jednakosti po hash vrijednosti

Vrste indeksa

pojedinacni (single index)

klasiCan indeks na jednom
stupcu

parcijalni (partial index)

samo redovi koji zadovoljavaju
dani uvjet ¢e biti indeksirani
(npr. WHERE TYPE = ‘A’)

composite (single index)

indeks na viSe stupaca, ukoliko
spora pretraga/sortiranje
zahtijeva viSe stupaca

funkcijski(functional index)

podaci ¢e biti indeksirani u ovisnosti o
rezultatu funkcije (npr.
CREATE INDEX ON lower(name))

Problemi s indeksima
Umetanje i brisanje !!

animal tablica sadrzi podatke o taksonomski odredenjima razli€itih zivotinjskih vrsta (kingdom,
phlyum, class, order, familiy, genus, species) te sadrzi sliedeci indeks:

CREATE INDEX animal_canonical_name_idx ON animal(canonical_name)

Koji upiti ¢e koristit novostvoreni indeks? (hint: koristite EXPLAIN)

(1) SELECT * FROM animal WHERE canonical_name = ‘bird’;

(2) SELECT * FROM animal WHERE canonical_name = 'a%’;

(3) SELECT * FROM animal WHERE canonical_name = ‘%a’;

(4) SELECT * FROM animal WHERE lower(canonical_name) = ‘bird’;

Transakcije

Transakcija je logiCka jedinica rada koja izvrSava jedan ili viSe SQL upita kao jedinstvenu atomiCku operaciju, gdje ¢e se
ili sve stavke izvrsiti (commit) ili nijedna (rollback)

Primjer:
BEGIN;
-- operacije..
COMMIT;
Moguce je ponistiti operacije, ukoliko dode do pogreske - ROLLBACK ;
MozZemo stvoriti savepointe i resetirati stanje do specificnog savepointa koristeci njegovo ime, npr. u tijelu transakcije:
SAVEPOINT pointT;
te potom reset:

ROLLBACK pointT;

Problemi s transakcijama

(1) Zaboravite li izvrsiti COMMIT, transakcija zadrzava lockove i blokira druge transakcije

(2) Transakcije koje se izvode duze vremena sprje¢avaju VACUUM proces koji oslobada zauzeti
prostor mrtvih n-torki

SELECT

pid, usename, state, query, xact_start
FROM pg_stat_activity
WHERE state = 'active';

(3) Dvije transakcije koje ¢ekaju oslobodenje locka ove druge - deadlocks, PostgreSQL detektira
takvo stanje i odbacuje jednu transakciju

SELECT * FROM pg_locks;

Razine izolacije transakcija

Razina

Opis

Rjesava problem

READ UNCOMMITTED

PonaSa se kao READ COMMITTED
(Postgres ne dozvoljava dirty reads)

READ COMMITTED
(default)

Vidi samo one podatke koji su committed
nakon svakog iskaza

sprjeCava prljava Citanja (eng.
dirty reads)

REPEATABLE READ

Vidi snapshot od pocetka izvodenja
transkacije

sprjeCava neponavljauca
Citanja (eng. nonrepeatable
reads)

SERIALIZABLE

Potpuno izvrSavanje transakcija u seriji:
najsigurnije i najsporije

sprieCava sve anomalije

Uskladenost s ACID-om

Svojstvo

Znacenje

Postgres implementacija

Atomicity

Sve naredbe u transkaciji se izvrse ili se
nijedna ne izvrsi

putem COMMIT / ROLLBACK

Consistency

Baza podataka radi tranziciju iz jednog stanja
u drugo

putem ogranienja, okidaca i
transkacijskog integriteta

racunati da su spremljeni na disku bez obzira
na nepredvidene dogadaje

Isolation Paralelne transakcije ne utjeCu jedna na kroz MVCC (Multi-Version
drugu Concurrency Control)
Durability Jednom kad su podaci zapisani, mozemo implementirano kroz WAL

(Write-Ahead Logging)

Postavljanje Postgresa

Kao Sto je spomenuto na proslim vjezbama, postavit cemo Postgres kontejner putem
Docker alatal!

Koristit cemo sljedecu jednostavnu naredbu:
docker run -d \
--name postgres-local \
- POSTGRES_PASSWORD=mysecretpassword \
postgres:18

Alati

MoZete koristiti koji god alat Zelite kako biste ostvarili komunikaciju s bazom podataka i izvrSavali SQL

upite:

DataGrip DBeaver VS Code pgadmin

Vjerojatno je najlakse koristiti komandno-linijski alat psgl unutar Postgres kontejnera:
docker run -it postgres-local psql -U postgres

Taj alat funkcionira kao REPL (read-evaluation-print loop) program, koji prvo trazi upit, potom ispise
rezultat i onda ponovno trazi upit.

Primjer 1
Istrazite barem ove navedene sistemske tablice:

pg_database
pg_stat_database

pg_stats
pg_stat_user_tables
pg_stat_activity
information_schema.tables

+ + + + + +

Primjer 2
Izlistajte sve baze podataka i njihov sadrzaj koristeci sljedece tablice:

+ pg_database
- oid
- datname
+ pg_stat_database
- Xact_commit
- xact_rollback

Primjer 3

KoristeCi PPPK-Vjezbe-01-Seed.sqgl datoteku koja se nalazi na IE kako biste postavili
podatke u bazi.

Dohvatite sljedece podatke:

a) top 5 studenata po prosje¢nim brojem bodova
b) najpopularniji ispiti (po broju prijava)
c) postotak prolaznosti

Primjer 4

Umetnite podatke o dva studenta unutar transakcije, ali napravite pogresku prilikom
drugog umetanja (npr. dvostruki primarni klju€) i pokazite da se transakcija ponistila (eng.

rollback).

Sirova (eng. raw) konekcija

Koristit Cete je u prvom projektu, ukoliko Zelite implementirati vlastito ORM rjeSenje

U primjerima na satu koristit e se Npgsql - biblioteka za C# programski jezik

Primjer 5

Koristeci sirovu konekciju, napravite sljedece primjere:

A - Ubacite novog studenta i dodijeljeni ID

B - Azurirajte bodove i status studentove prijave ispita

C - Koristeci transakciju, obriSite jednog studenta i njegove prijave ispita

D - KoriStenjem sirove konekcije (C# + Npgsql), dohvatite podatke o studentimaii
mapirajte ih na instance programske klase Student

