
Postgres funkcionalnosti
Pristup podacima iz programskog koda
25/26

Borna Skračić @ Algebra31. listopada 2025. 1

Ishod učenja 1

Sadržaj
(1) SQL - podsjetnik

(2) Podatkovni tipovi

(3) Sequence

(4) Indeksi

(5) Transakcije

(6) Docker setup

(7) Primjeri

Strukturirani jezik upita - SQL
(1) DDL (Data Definition Language)

CREATE, DROP, ALTER

(2) DML (Data Modifying Language)

CRUD operacije (INSERT, SELECT, UPDATE, DELETE)

filtracija (WHERE) i sortiranje (ORDER BY)

agregatne funkcije (AVG, COUNT, SUM, MIN, MAX) s grupiranjem (GROUP BY)

SQL funkcije
CREATE OR REPLACE FUNCTION species_category(sp_name TEXT) RETURNS TEXT
AS $$

BEGIN

IF sp_name ILIKE 'a%' THEN RETURN 'Group A';

ELSIF sp_name ILIKE 'b%' THEN RETURN 'Group B';

ELSE RETURN 'Other';

 END IF;

END;

$$ LANGUAGE plpgsql IMMUTABLE;

-- Funkcije mogu biti IMMUTABLE, STABLE i VOLATILE (ovisno o kontekstu korištenja)

Podatkovni tipovi
Za izradu ORM-a, potrebno je izvesti mapiranje osnovnih Postgres podatkovnih tipova na
programske podatkovne tipove, npr.

+ varchar(255) ⇒ string
+ bigint ⇒ long
+ Timestamp [without time zone] ⇒ DateTime
+ …

Dobro proučiti podatkovne tipove dostupne u Postgresu:
+ https://www.postgresql.org/docs/current/datatype.html

https://www.postgresql.org/docs/current/datatype.html%E2%80%8B

Postgres sekvenca
Objekt u bazi podataka koji osigurava autoinkrementalno generiranje nove vrijednosti (najčešće za
primarni ključ).

Funkcije:
nextval(‘seq’)
→ inkrementira i vraća sljedeću vrijednost

currval(‘seq’)
→ posljednja vrijednost korištena u ovoj sesiji

 setval(‘seq’, N)
→ postavlja vrijednost sekvence na N

Od PG 10+, identity stupci (GENERATED ALWAYS AS IDENTITY) se preferiraju nad SERIAL
tipovima.

Postgres sekvenca
Kreirana implicitno kada se koristi SERIAL podatkovni tip ili eksplicitno putem CREATE SEQUENCE

+ u pozadini je sadržan brojač u kataloškoj relaciji koji je pohranjen u pg_sequence sistemskom
katalogu

+ jednom kada je vrijednost inkrementirana, ista je izgubljena čak i ako je transkacija poništena
(eng. rollback) – osigurava jedinstvenost

Indeksi
Indeksi se koriste kada želimo poboljšati performanse upita pretrage i/ili sortiranja podataka iz
tablice. U pozadini se stvara B-stablo struktura podataka (binarno stablo pretrage) koja
omogućuje binarno petraživanje u vremenskoj složenosti ~O(logn).

Default ponašanje je linearna pretraga (eng. sequential scan).

CREATE INDEX name ON table [USING <algorithm>] (column, <…>)

+ B-Tree
Podržani operatori: <, <=, =, >=, >

+ GIN
full-text search / JSONB /arrays

+ GiST
geometric, full-text search

+ BRIN
veliki sekvencijski podaci (primjer: time-series)

+ Hash
usporedbe jednakosti po hash vrijednosti

Vrste indeksa

pojedinačni (single index)

klasičan indeks na jednom
stupcu

parcijalni (partial index)

 samo redovi koji zadovoljavaju
dani uvjet će biti indeksirani
(npr. WHERE TYPE = ‘A’)

composite (single index)

indeks na više stupaca, ukoliko
spora pretraga/sortiranje

zahtijeva više stupaca

funkcijski(functional index)

podaci će biti indeksirani u ovisnosti o
rezultatu funkcije (npr.
CREATE INDEX ON lower(name))

Problemi s indeksima
Umetanje i brisanje !!

animal tablica sadrži podatke o taksonomski određenjima različitih životinjskih vrsta (kingdom,
phlyum, class, order, familiy, genus, species) te sadrži sljedeći indeks:

CREATE INDEX animal_canonical_name_idx ON animal(canonical_name)

Koji upiti će koristit novostvoreni indeks? (hint: koristite EXPLAIN)

(1) SELECT * FROM animal WHERE canonical_name = ‘bird’;
(2) SELECT * FROM animal WHERE canonical_name = ’a%’;
(3) SELECT * FROM animal WHERE canonical_name = ‘%a’;
(4) SELECT * FROM animal WHERE lower(canonical_name) = ‘bird’;

Transakcije
Transakcija je logička jedinica rada koja izvršava jedan ili više SQL upita kao jedinstvenu atomičku operaciju, gdje će se
ili sve stavke izvršiti (commit) ili nijedna (rollback)

Primjer:

 BEGIN;

 -- operacije…

 COMMIT;

Moguće je poništiti operacije, ukoliko dođe do pogreške - ROLLBACK;

Možemo stvoriti savepointe i resetirati stanje do specifičnog savepointa koristeći njegovo ime, npr. u tijelu transakcije:

SAVEPOINT point1;

te potom reset:

ROLLBACK point1;

Problemi s transakcijama
(1) Zaboravite li izvršiti COMMIT, transakcija zadržava lockove i blokira druge transakcije

(2) Transakcije koje se izvode duže vremena sprječavaju VACUUM proces koji oslobađa zauzeti
prostor mrtvih n-torki

(3) Dvije transakcije koje čekaju oslobođenje locka ove druge - deadlocks, PostgreSQL detektira
takvo stanje i odbacuje jednu transakciju

SELECT
pid, usename, state, query, xact_start

FROM pg_stat_activity
WHERE state = 'active';

SELECT * FROM pg_locks;

Razine izolacije transakcija
Razina Opis Rješava problem

READ UNCOMMITTED Ponaša se kao READ COMMITTED
(Postgres ne dozvoljava dirty reads) ∅

READ COMMITTED
(default)

Vidi samo one podatke koji su committed
nakon svakog iskaza

sprječava prljava čitanja (eng.
dirty reads)

REPEATABLE READ Vidi snapshot od početka izvođenja
transkacije

sprječava neponavljauća
čitanja (eng. nonrepeatable
reads)

SERIALIZABLE Potpuno izvršavanje transakcija u seriji:
najsigurnije i najsporije

sprječava sve anomalije

Usklađenost s ACID-om
Svojstvo Značenje Postgres implementacija

Atomicity Sve naredbe u transkaciji se izvrše ili se
nijedna ne izvrši

putem COMMIT / ROLLBACK

Consistency Baza podataka radi tranziciju iz jednog stanja
u drugo

putem ograničenja, okidača i
transkacijskog integriteta

Isolation Paralelne transakcije ne utječu jedna na
drugu

kroz MVCC (Multi-Version
Concurrency Control)

Durability Jednom kad su podaci zapisani, možemo
računati da su spremljeni na disku bez obzira
na nepredviđene događaje

implementirano kroz WAL
(Write-Ahead Logging)

Postavljanje Postgresa
Kao što je spomenuto na prošlim vježbama, postavit ćemo Postgres kontejner putem
Docker alata!

Koristit ćemo sljedeću jednostavnu naredbu:

docker run -d \

--name postgres-local \

-e POSTGRES_PASSWORD=mysecretpassword \

postgres :18

Alati
Možete koristiti koji god alat želite kako biste ostvarili komunikaciju s bazom podataka i izvršavali SQL
upite:

Vjerojatno je najlakše koristiti komandno-linijski alat psql unutar Postgres kontejnera:

docker run -it postgres-local psql -U postgres

Taj alat funkcionira kao REPL (read-evaluation-print loop) program, koji prvo traži upit, potom ispiše
rezultat i onda ponovno traži upit.

DataGrip DBeaver VS Code pgadmin

Primjer 1
Istražite barem ove navedene sistemske tablice:

+ pg_database
+ pg_stat_database
+ pg_stats
+ pg_stat_user_tables
+ pg_stat_activity
+ information_schema.tables

Primjer 2
Izlistajte sve baze podataka i njihov sadržaj koristeći sljedeće tablice:

+ pg_database
- oid
- datname

+ pg_stat_database
- xact_commit
- xact_rollback

Primjer 3
Koristeći PPPK-Vjezbe-01-Seed.sql datoteku koja se nalazi na IE kako biste postavili
podatke u bazi .

Dohvatite sljedeće podatke:

a) top 5 studenata po prosječnim brojem bodova
b) najpopularniji ispiti (po broju prijava)
c) postotak prolaznosti

Primjer 4
Umetnite podatke o dva studenta unutar transakcije , ali napravite pogrešku prilikom
drugog umetanja (npr. dvostruki primarni ključ) i pokažite da se transakcija poništila (eng.
rollback) .

Sirova (eng. raw) konekcija
Koristit ćete je u prvom projektu , ukoliko želite implementirati vlastito ORM rješenje

U primjerima na satu koristit će se Npgsql - biblioteka za C# programski jezik

Primjer 5
Koristeći sirovu konekciju, napravite sljedeće primjere:

A - Ubacite novog studenta i dodijeljeni ID

B - Ažurirajte bodove i status studentove prijave ispita

C - Koristeći transakciju, obrišite jednog studenta i njegove prijave ispita

D - Korištenjem sirove konekcije (C# + Npgsql), dohvatite podatke o studentima i
mapirajte ih na instance programske klase Student

