JAVA 2

Concurrency




Teme

* Multiprocessor vs Multicore processor
* Process, Thread, Task

o Multi*

« JVM

 Runnable vs Thread, Executors

» Upravljanje threadovima

« Kooperacijski mehanizmi

e Sin
e Sin
e Cal

nronizacija
nronizacijski mehanizmi

able 1 Fork-Join

L

ALGEBRA
BERNAYS




Multiprocessor vs Multicore processor

* multiprocessor — vise CPU jedinica koje rade paralelno i mogu
Istovremeno izvrsavati vise programa

« SMP - Simultaneous MultiProcessing
« efikasniji za izvrSavanje viSe programa (multiprocessing)
« omogucuje paralelizam

* multicore — jedan CPU sa viSe repliciranih jedinica (core) koje mogu
istovremeno izvrSavati vise instrukcija (istog ili razliCith programa)
« CMP — Chip—Level MultiProcessing — svaka jedinica ima vlastitu jedinicu
izvrsavanja i L1 cache, dok L2 cache dijeli sa ostalim jedinicama
e omogucuje paralelizam
« efikasniji za izvrSavanje jednog programa (multithreading)

ALGEBRA
BERNAYS

L



Process, Thread, Task

* process - instanca programa u izvodenju
« sadrzi kod | sve resurse potrebne za izvodenje
* sadrzi najmanje jedan thread
» primjer: MS Word process

* thread — najmanji dio procesa, odnosno sekvenci instrukcija
» dijeli isti memorijski prostor sa procesom i njegovim threadovima
» primjer: MS Word process - auto-save i spell-check threadovi

* task — programske instrukcije ucCitane u memoriju
 unit of work — instanca posla

ALGEBRA
BERNAYS

L



Multi*

* multiprocessing — paralelno izvrsavanje vise programa, na razliCitim
procesorima, dijele¢i RAM i periferije

* multiprogramming — konkurentno izvrsavanje vise programa, na istom

procesoru — jeftinije, ali sporije od multiprocessinga

« OS drzi programe u poolu i upravlja redovima izvrSavanja (CPU, /O queue) —
kada jedan program zavrsi sa CPU i trazi /O, ulazi u I/0O queue, a istovremeno
novi program iz CPU queue pocinje sa izvrSavanjem — process context switching

* multithreading — konkurentno izvrsavanje threadova istog procesa
* thread context switching

* multitasking — konkurentno izvrSavanje programa, procesa, threadova...
* logiCka ekstenzija multiprogramminga, baziran na vremenskom izvrSavanju

ALGEBRA
BERNAYS

L



JVM

* implementira preemptive, priority based scheduler
* radi u suglasnosti sa OS thread schedulerom

* preemptive — osigurava da Ce procesorsko vrijeme biti vremenski
dijeljeno izmedu razliCitih threadova
* time-slicing osigurava OS
* priority based — svaki od threadova ima dodijeljen prioritet, te moze biti
prekinut kako bi se thread veceg prioriteta mogao izvrsiti
* Thread.MIN_PRIORITY, Thread.NORM_PRIORITY, Thread.MAX_ PRIORITY

 kako ne bi izazvao izgladnjivanje (starvation), OS thread scheduler moze odabrati
thread manjeg (ili istog, izgladnjenog) prioriteta za izvrSavanje

ALGEBRA
BERNAYS

L



Runnable vs Thread, Executors

* kreiranje low level threada
« extends Thread — ujedno i ograniCenje radi Single Inheritance Model
« implements Runnable - omogucuje fleksibilnost jer klasi dodaje novo ponasanje (mixin)
* vrlo skupo i nezgodno za upravljanje

 Executors

* high level API — kvalitetno upravljanje threadovima, omogucuje ponovno iskoristavanje
iInstanci, a ne ponovno kreiranje po potrebi

Fixed thread pool executor — kreira thread pool sa odredenim brojem threadova

Cached thread pool executor — kreira thread pool koji po potrebi kreira i cacheira threadove za
ponovnu uporabu

Scheduled thread pool executor — kreira thread pool koji omogucava pokretanje threadova nakon
odredenog delaya ili periodicki
Single thread pool executor — jedinstveni thread za sve taskove

Work stealing thread pool executor — kreira thread pool koji odrzava dovoljno threadova da podrzi
definiran level paralelizma

ALGEBRA
BERNAYS

L



Upravljanje threadovima

* sleep() — static, nema smisla pozivati ga na instanci — thread u
izvrSavanju spava odredeno vrijeme, drzeCi mutex lock

« setDaemon() — daemon thread — ne prijeCi JVM od gasenja
premda je jos uvijek u stanju izvrSavanja (garbage collector)

* Jjoin() —omogucava da jedan thread Ceka na izvrsenje drugoga

* setPriority(Thread.* PRIORITY) — omogucava odredenim
threadovima dati prednost

* yield() — thread moze prepustiti resurse drugim threadovima
* ThreadGroup — povezivanje threadova radi upravljanja

ALGEBRA
L BERNAYS




Kooperacijski mehanizmi

* wait() — govori threadu da prepusti lock i Ceka dok drugi thread ne
pozove notify(), notifyAll()
* nalik sleep(), ali wait() oslobada lock, dok sleep() ne oslobada

* notify() — budi jedan thread koji je pozvao wait() nad istim lockom

* notifyAll() - budi sve threadove koji su pozvali wait() nad istim
lockom

* producer consumer problem
* BlockingQueue — sakriva komukacijske mehanizme pod haubom

ALGEBRA
L BERNAYS




Sinhronizacija

 ugradeni monitor —omogucava threadovima mutex (mutual exclusion) i kooperaciju

« synchronized — KritiCna sekcija
 pesimistic — prvo provjerava da li thread moze uci u kritiCnu sekciju, a potom osigurava da
nijedan drugi thread ne moze uci

* optimistic - drugi pristup je CAS (compare and__swa;/aq) — dozvoljava se update, a potom provijeri
da li je bilo smetnji — ako je bilo, ponistava akciju — Atomicinteger, AtomicLong...

oznacva kriticnu sekciju — blok, metoda, na izvoru ili klijentu
instanca — svi threadovi koji koriste isti objekt su sinhronizirani
instanca klase — svi threadovi koi koriste istu klasu su sinhronizirani

definiran kao re-entrant mutex lock object
 ako sinhronizirana metoda pozove drugu sinhroniziranu metodu, slobodno ulazi

e [ock

* moze imati timeout

* Jock() i unlock() metode mo%u biti pozvane iz raznih metoda, dok je synchronized ograniCen na
jednu metodu, odnosno blok unutar metode

« paziti na DeadLock!

ALGEBRA
BERNAYS

L



Sinhronizacijski mehanizmi

« Semaphore — kontrolira broj konkurentnih threadova koiji pristupaju
resursu (permits) — ako ih viSe pristupa, moraju ¢ekati da se resurs
oslobodi

« Count down latch — koristi se u situaciji kada jedan thread oCekuje
da se drugi threadovi izvrse — efektivho zaustavlja izvrsenje
threada dok ostali ne takoder ne zavrse

 primjer — startanje klijenta tek nakon sto su pokrenuti server i baza

» Cyclic barrier — koristi se da vise threadova (parties) Ceka dok svi
ne dodu do odredenog mjesta (barrier)

e primjer — 2 igraca cekaju da im se pridruzi treci

ALGEBRA

L BERNAYS



Callable i Fork-Join

 Callable — sucelje dizajnirano za izvrsavanje u threadovima, kao i
Runnable
* metoda call() - vraCa rezultat i baca exception, za razliku od Runnable run()
metode

* Fork-Join — rekurzivno razbija task u manje dok nisu dovoljno
jednostavni za izvrSenje
* divide and conquer algorithm
* work stealing - omogucava da procesor nikada nije idle

ALGEBRA
BERNAYS

L



Demo

* Project

S —

lzvor:http://www.jnhsolutions.com/contact-us/request-a-demo/

ALGEBRA
BERNAYS



http://www.jnhsolutions.com/contact-us/request-a-demo/
http://www.jnhsolutions.com/contact-us/request-a-demo/
http://www.jnhsolutions.com/contact-us/request-a-demo/
http://www.jnhsolutions.com/contact-us/request-a-demo/
http://www.jnhsolutions.com/contact-us/request-a-demo/
http://www.jnhsolutions.com/contact-us/request-a-demo/
http://www.jnhsolutions.com/contact-us/request-a-demo/
http://www.jnhsolutions.com/contact-us/request-a-demo/

Hvala na paznji!




	Slide 1: JAVA 2 
	Slide 2: Teme
	Slide 3: Multiprocessor vs Multicore processor
	Slide 4: Process, Thread, Task
	Slide 5: Multi*
	Slide 6: JVM
	Slide 7: Runnable vs Thread, Executors
	Slide 8: Upravljanje threadovima
	Slide 9: Kooperacijski mehanizmi
	Slide 10: Sinhronizacija
	Slide 11: Sinhronizacijski mehanizmi
	Slide 12: Callable i Fork-Join
	Slide 13: Demo
	Slide 14: Hvala na pažnji!

