
JAVA 2

Concurrency



Teme

• Multiprocessor vs Multicore processor

• Process, Thread, Task

• Multi*

• JVM

• Runnable vs Thread, Executors

• Upravljanje threadovima

• Kooperacijski mehanizmi

• Sinhronizacija

• Sinhronizacijski mehanizmi

• Callable i Fork-Join



Multiprocessor vs Multicore processor

• multiprocessor – više CPU jedinica koje rade paralelno i mogu 
istovremeno izvršavati više programa

• SMP - Simultaneous MultiProcessing

• efikasniji za izvršavanje više programa (multiprocessing)

• omogućuje paralelizam

• multicore – jedan CPU sa više repliciranih jedinica (core) koje mogu 
istovremeno izvršavati više instrukcija (istog ili različith programa)

• CMP – Chip–Level MultiProcessing – svaka jedinica ima vlastitu jedinicu 
izvršavanja i L1 cache, dok L2 cache dijeli sa ostalim jedinicama

• omogućuje paralelizam

• efikasniji za izvršavanje jednog programa (multithreading)



Process, Thread, Task

• process - instanca programa u izvođenju
• sadrži kod i sve resurse potrebne za izvođenje

• sadrži najmanje jedan thread

• primjer: MS Word process

• thread – najmanji dio procesa, odnosno sekvenci instrukcija
• dijeli isti memorijski prostor sa procesom i njegovim threadovima

• primjer: MS Word process - auto-save i spell-check threadovi

• task – programske instrukcije učitane u memoriju
• unit of work – instanca posla



Multi*

• multiprocessing – paralelno izvršavanje više programa, na različitim 
procesorima, dijeleći RAM i periferije

• multiprogramming – konkurentno izvršavanje više programa, na istom 
procesoru – jeftinije, ali sporije od multiprocessinga

• OS drži programe u poolu i upravlja redovima izvršavanja (CPU, I/O queue) –
kada jedan program završi sa CPU i traži I/O, ulazi u I/O queue, a istovremeno 
novi program iz CPU queue počinje sa izvršavanjem – process context switching

• multithreading – konkurentno izvršavanje threadova istog procesa
• thread context switching

• multitasking – konkurentno izvršavanje programa, procesa, threadova...
• logička ekstenzija multiprogramminga, baziran na vremenskom izvršavanju



JVM

• implementira preemptive, priority based scheduler
• radi u suglasnosti sa OS thread schedulerom

• preemptive – osigurava da će procesorsko vrijeme biti vremenski 
dijeljeno između različitih threadova 

• time-slicing osigurava OS

• priority based – svaki od threadova ima dodijeljen prioritet, te može biti 
prekinut kako bi se thread većeg prioriteta mogao izvršiti

• Thread.MIN_PRIORITY, Thread.NORM_PRIORITY, Thread.MAX_PRIORITY

• kako ne bi izazvao izgladnjivanje (starvation), OS thread scheduler može odabrati 
thread manjeg (ili istog, izgladnjenog) prioriteta za izvršavanje



Runnable vs Thread, Executors

• kreiranje low level threada
• extends Thread – ujedno i ograničenje radi Single Inheritance Model

• implements Runnable - omogućuje fleksibilnost jer klasi dodaje novo ponašanje (mixin)

• vrlo skupo i nezgodno za upravljanje

• Executors
• high level API – kvalitetno upravljanje threadovima, omogućuje ponovno iskorištavanje 

instanci, a ne ponovno kreiranje po potrebi
• Fixed thread pool executor – kreira thread pool sa određenim brojem threadova 

• Cached thread pool executor – kreira thread pool koji po potrebi kreira i cacheira threadove za 
ponovnu uporabu

• Scheduled thread pool executor – kreira thread pool koji omogućava pokretanje threadova nakon 
određenog delaya ili periodički

• Single thread pool executor – jedinstveni thread za sve taskove

• Work stealing thread pool executor – kreira thread pool koji održava dovoljno threadova da podrži 
definiran level paralelizma 



Upravljanje threadovima

• sleep() – static, nema smisla pozivati ga na instanci – thread u 
izvršavanju spava određeno vrijeme, držeći mutex lock

• setDaemon() – daemon thread – ne priječi JVM od gašenja 
premda je još uvijek u stanju izvršavanja (garbage collector)

• join() – omogućava da jedan thread čeka na izvršenje drugoga 

• setPriority(Thread.*_PRIORITY) – omogućava određenim 
threadovima dati prednost

• yield() – thread može prepustiti resurse drugim threadovima

• ThreadGroup – povezivanje threadova radi upravljanja



Kooperacijski mehanizmi

• wait() – govori threadu da prepusti lock i čeka dok drugi thread ne 
pozove notify(), notifyAll()

• nalik sleep(), ali wait() oslobađa lock, dok sleep() ne oslobađa

• notify() – budi jedan thread koji je pozvao wait() nad istim lockom

• notifyAll() - budi sve threadove koji su pozvali wait() nad istim 
lockom

• producer consumer problem

• BlockingQueue – sakriva komukacijske mehanizme pod haubom



Sinhronizacija

• ugrađeni monitor –omogućava threadovima mutex (mutual exclusion) i kooperaciju

• synchronized – kritična sekcija
• pesimistic – prvo provjerava da li thread može ući u kritičnu sekciju, a potom osigurava da 

nijedan drugi thread ne može ući
• optimistic - drugi pristup je CAS (compare and swap) – dozvoljava se update, a potom provjeri 

da li je bilo smetnji – ako je bilo, poništava akciju – AtomicInteger, AtomicLong...
• označva kritičnu sekciju – blok, metoda, na izvoru ili klijentu 
• instanca – svi threadovi koji koriste isti objekt su sinhronizirani
• instanca klase – svi threadovi koi koriste istu klasu su sinhronizirani
• definiran kao re-entrant mutex lock object

• ako sinhronizirana metoda pozove drugu sinhroniziranu metodu, slobodno ulazi

• Lock
• može imati timeout
• lock() i unlock() metode mogu biti pozvane iz raznih metoda, dok je synchronized ograničen na 

jednu metodu, odnosno blok unutar metode

• paziti na DeadLock!



Sinhronizacijski mehanizmi

• Semaphore – kontrolira broj konkurentnih threadova koji pristupaju 
resursu (permits) – ako ih više pristupa, moraju čekati da se resurs 
oslobodi

• Count down latch – koristi se u situaciji kada jedan thread očekuje 
da se drugi threadovi izvrše – efektivno zaustavlja izvršenje 
threada dok ostali ne također ne završe

• primjer – startanje klijenta tek nakon što su pokrenuti server i baza

• Cyclic barrier – koristi se da više threadova (parties) čeka dok svi 
ne dođu do određenog mjesta (barrier)

• primjer – 2 igrača čekaju da im se pridruži treći



Callable i Fork-Join

• Callable – sučelje dizajnirano za izvršavanje u threadovima, kao i 
Runnable 

• metoda call() - vraća rezultat i baca exception, za razliku od Runnable run()
metode

• Fork-Join – rekurzivno razbija task u manje dok nisu dovoljno 
jednostavni za izvršenje

• divide and conquer algorithm

• work stealing - omogućava da procesor nikada nije idle



Demo

• Project

Izvor:http://www.jnhsolutions.com/contact-us/request-a-demo/

http://www.jnhsolutions.com/contact-us/request-a-demo/
http://www.jnhsolutions.com/contact-us/request-a-demo/
http://www.jnhsolutions.com/contact-us/request-a-demo/
http://www.jnhsolutions.com/contact-us/request-a-demo/
http://www.jnhsolutions.com/contact-us/request-a-demo/
http://www.jnhsolutions.com/contact-us/request-a-demo/
http://www.jnhsolutions.com/contact-us/request-a-demo/
http://www.jnhsolutions.com/contact-us/request-a-demo/


Hvala na pažnji!


	Slide 1: JAVA 2 
	Slide 2: Teme
	Slide 3: Multiprocessor vs Multicore processor
	Slide 4: Process, Thread, Task
	Slide 5: Multi*
	Slide 6: JVM
	Slide 7: Runnable vs Thread, Executors
	Slide 8: Upravljanje threadovima
	Slide 9: Kooperacijski mehanizmi
	Slide 10: Sinhronizacija
	Slide 11: Sinhronizacijski mehanizmi
	Slide 12: Callable i Fork-Join
	Slide 13: Demo
	Slide 14: Hvala na pažnji!

