S088s
SOLID PRINCIPI

Temelji kvalitetnog objektno orijentiranog dizajna

—— Programsko inZenjerstvo Vjezbe

LC_; ALGEBRA

Sto je SOLID?

Single Responsibility

Klasa ima samo jednu odgovornost i jedan razlog za promjenu

Open / Closed

Otvoreno za proSirenja, zatvoreno za modifikacije

Liskov Substitution

Podklase moraju biti zamjenjive za svoje bazne klase

Interface Segregation

Vise manijih sucelja umjesto jednog velikog

Dependency Inversion

Ovisnost o apstrakcijama, ne o konkretnim implementacijama

LC_; ALGEBRA

. Single Responsibility

"Klasa treba imati samo jedan razlog za promjenu.”

Definicija Lose: Vise odgovornosti

Svaka klasa ili modul trebaju imati samo jednu odgovornost - jedan razlog za promjenu. —

Ako klasa ima viSe odgovornosti, promjena jedne moze utjecati na druge. S p—

Prednosti Dobro: Jedna odgovornost

. J

Manje ovisnosti izmedu komponenti

LakSe razumijevanje i odrzavanje koda

Jednostavnije refaktoriranje Kljuéno: Jedna promjena = jedna klasa

[C) ALGEBRA \

. Single Responsibility LOSE

public class Korisnik {

private String ime, email;
4 razloga za promjenu klase

Tesko testiranje
// 1. Upravljanje podacima y

public void setIme (String ime) { Visoka povezanost
this.ime = ime;
}

public String getIme() { return ime; }

Kod se ne moze ponovno koristiti

Sto ako...
// 2. Baza podataka

public void spremiUBazu() { Promijenimo bazu podataka?

Connection conn = getConnection(); Trebamo drugi email servis?
ps.executeUpdate () ;

} Format izvjesStaja se mijenja?

// 3. Slanje emaila el e el W e
=cCl |
public void posaljiEmail () { email.send(); } edna promjena = cijela klasa se mijenja

// 4. Generiranje izvjestaja
public String generirajPDF() { return "..."; }
}

L(. ALGEDKA

. Single Responsibility

Il Samo podaci korisnika
public class Korisnik {
private String ime;
private String email;

public String getIme () { return ime; }
public void setlIme (String ime) {
this.ime = ime;

}
}

Il Samo slanje emaila

public class EmailServis {

public void posaljiDobrodoslicu (
Korisnik korisnik) {

Email email = new Email ();
email.setTo (korisnik.getEmail());
email.send() ;

}

}

[(_. ALGEBRA

/I Samo pristup bazi

public class KorisnikRepository {
private Connection conn;

public void spremi (Korisnik k) {
PreparedStatement ps =
conn.prepareStatement (...);
ps.executeUpdate () ;

}

}

Il Samo generiranje izvjestaja

public class IzvjestajGenerator ({

public String generiraj (
Korisnik korisnik) {

return "PDF izvjeStaj za: "
+ korisnik.getIme () ;

}

}

. Open / Closed

"Otvoreno za prosirenje, zatvoreno za modifikacije."

Lose: Modificiramo klasu

i L remes
Softverski entiteti (klase, moduli, funkcije) trebaju biti otvoreni za proSirenje, ali zatvoreni

za modifikacije. Nova funkcionalnost se dodaje bez mijenjanja postojeéeg koda. Peien bR/ Sisliees

Dobro: Prosirujemo

Kako postici? -

KoriStenje apstrakcija (interfaces, abstract classes)

[
Polimorfizam umjesto if-else lanaca - - -

Strategy pattern, Factory pattern -

Dependency Injection
Kljuéno: Dodajemo klase, ne mijenjamo postojece

[C) ALGEBRA \

. Open / Closed

s

-

/I Dodavanje novog oblika zahtijeva promjenu koda!

public class KalkulatorPovrsine ({

public double izracunaj (Object oblik) {

if (oblik instanceof Pravokutnik) {
Pravokutnik p = (Pravokutnik) oblik;
return p.sirina * p.visina;

}

else if (oblik instanceof Krug) {
Krug k = (Krug) oblik;
return Math.PI * k.radius * k.radius;

}
// Novi oblik? Moramo dodati novi else if!
else if (oblik instanceof Trokut) ({

// ... nova logika

return 0;
}
}

[C) ALGEBRA

Problemi

Svaki novi oblik = promjena klase
Rastudi if-else lanac
Rizik od regresije

Tesko odrzavanje

Krsenje OCP

Klasa NIJE zatvorena za modifikacije - svaki put kad
dodamo novi oblik, moramo mijenjati postojeci kod.

instanceof + if-else = code smell

. Open / Closed

Il Apstrakcija - sucelje

public interface Oblik {
double izracunajPovrsinu();

}

public class Pravokutnik implements Oblik {
private double sirina, visina;

public double izracunajPovrsinu() {

return sirina * visina;

}

}

public class Krug implements Oblik {
private double radius;

public double izracunajPovrsinu() {
return Math.PI * radius * radius;

Il Kalkulator - nikad se ne mijenja!

public class KalkulatorPovrsine ({
public double izracunaj (Oblik o) {
return o.izracunajPovrsinu();
}
}

Arhitektura

’ LT T
}
()
/I Novi oblik - bez promjene koda!
promj Rezultat
public class Trokut implements Oblik { Novi oblici bez promjena koda
private double baza, visina; T o
public double izracunajPovrsinu() { Polimorfizam u akciji
return (baza * visina) / 2;
}
}
. J

[C; ALGEBRA

Liskov Substitution

"Podklase moraju biti zamjenjive za svoje bazne klase."

Definicija
Ako je klasa B podklasa klase A, tada objekte klase A mozemo zamijeniti objektima
klase B bez naru$avanja ispravnosti programa.

Princip zamjenjivosti

Pravila

Podklasa ne smije suziti ponasanje bazne klase
zamijenjivo

Preduvjeti ne smiju biti jaci u podklasi

Postuvjeti ne smiju biti slabiji u podklasi

Invarijante moraju biti o€uvane
Kljucno: Program mora raditi jednako ispravno bilo da Kkoristi

objekt bazne klase ili podklase

Klasi¢an primjer krSenja

Kvadrat nasljeduje Pravokutnik - ali kvadrat ima drugacija ograni¢enja (a=b), $to moze
srusiti kod koji ocekuje pravokutnik.

[C_; ALGEBRA \

. Liskov Substitution LosE

public class Pravokutnik ({

protected int sirina, visina;

public void setSirina(int s) { this.sirina = s; }
public void setVisina(int v) { this.visina = v; }
public int getPovrsina() { return sirina * visina; } Problem

}

Matematicki: Kvadrat JE pravokutnik

() Programski: NIJE zamijenijiv!
/I Kvadrat "je" pravokutnik - ili nije?

public class Kvadrat extends Pravokutnik ({

@override Ocekivano vs. Stvarno
public void setSirina(int s) { .
this.sirina = s;

this.visina = s;
// Neoé&ekivano!

}

@Override
public void setVisina (int v) { 5x4=20 4x4=16
this.visina = v;
this.sirina = v; 0
// Neoé&ekivano! ocekivano Kvadrat
J
T
i i 1 - q - = m a
e erllis e b Pouka: Nasljedivanje nije uvijek pravi izbor

void testirajPravokutnik (Pravokutnik p) {
p.setSirina(5); p.setVisina(4);

assert p.getPovrsina() == 20;

// FAIL!

} // Kvadrat: 4x4=16, nikad 20!

[C) ALGEBRA

. Liskov Substitution © DoBRO

Il Zajednicko sucelje

public interface Oblik {
double getPovrsina () ;
double getOpseg () ;
} Ispravna hijerarhija

public class Pravokutnik implements Oblik {

private final int sirina, visina;

// immutable

public Pravokutnik (int s, int v) { ... }

public double getPovrsina() { return sirina*visina; }

public double getOpseg() { return 2*(sirina+visina); } - -
}

Il Kvadrat - vlastita implementacija!

public class Kvadrat implements Oblik {

private final int stranica; Zasto ovo radi

public Kvadrat (int s) { this.stranica = s; } el ehiEkd - fame seham
public double getPovrsina() { return stranica*stranica; })

public double getOpseg() { return 4*stranica; } Kompozicija umjesto nasljedivanja
} Sucelje definira ponasanje

/I Ovo radi s BILO kojim oblikom!

void ispisiInfo (Oblik o) { Potpuna zamjenjivost - svaki Oblik radi jednako

System.out.println ("PovrSina: " + o.getPovrsina());
}
ispisiInfo (new Pravokutnik(5, 4));
// OK!
ispisiInfo (new Kvadrat(5));
// OK!

[C) ALGEBRA

. Interface Segregation

"Klijenti ne smiju ovisiti o metodama koje ne koriste."

Definicija
Bolje je imati viSe manjih, specifi¢nih sucelja nego jedno veliko opée sucelje. Klase
ne bi trebale biti prisiliene implementirati metode koje ne koriste.

Fat Interface

10+ metoda

Prednosti e

Manje ovisnosti izmedu komponenti
LakSe testiranje i odrzavanje

Fleksibilnije dizajn

Nema praznih implementacija _

Segregirana sucelja

Svako s 2-3 metode

[C; ALGEBRA

A\

. Interface Segregation

r
Il "Fat interface" - previSe metoda!

public interface IMultifunkcionalniUredaj {
void ispisi (Dokument d);
void skeniraj (Dokument d);
void faksiraj (Dokument d);
void kopiraj (Dokument d);
void posaljiEmail (Dokument d);
}

/I Moderni printer - sve koristi

public class ModerniPrinter
implements IMultifunkcionalniUredaj ({
public void ispisi (Dokument d) {

/* OK */ }

public void skeniraj (Dokument d) {
/* OK */ }

public void faksiraj (Dokument d) {
/* OK */ }

// ... sve metode implementirane

}

(Il Stari printer - MORA implementirati SVE!

public class StariPrinter
implements IMultifunkcionalniUredaj {
public void ispisi (Dokument d) {

/* OK */ }

public void skeniraj (Dokument d) {

throw new UnsupportedOperationException () ;

}

// ... prazne metode ili iznimke

}

_
[C\ ALGEBRA

Problemi

Klase ovise 0 metodama koje ne koriste
Prazne implementacije ili iznimke
Krsenje LSP principa

Fat Interface

5 metoda!

Stari printer MORA implementirati metode koje nikad
nece koristiti

. Interface Segregation © DoBRO

public interface IPrinter {
void ispisi (Dokument d);
}
Segregirana sucelja

public interface IScanner {
s

}

public interface IFax ({
void faksiraj (Dokument d);

}

R sve 3 samo 1
Il Implementira SVE Sto treba

public class ModerniPrinter

implements IPrinter, IScanner, IFax { Prednosti
public void ispisi (Dokument d) { ... }
public void skeniraj (Dokument d) { ... } Klase ovise samo o onome §to koriste
I}Jubllc void faksiraj (Dokument d) { ... } Nema praznih implementacija
_) Lakse testiranje i odrzavanje
~

Il Implementira SAMO S$to moze

public class StariPrinter implements IPrinter ({ Vise manjih suéelja umjesto jednog velikog
public void ispisi (Dokument d) { ... }

// Nema praznih metoda!

! y

[Q ALGEBRA

. Dependency Inversion

"Ovisi o apstrakcijama, ne o konkretnim implementacijama."

Definicija
High-level moduli ne smiju ovisiti o low-level modulima. Oba trebaju ovisiti o
apstrakcijama. Apstrakcije ne smiju ovisiti o detaljima - detalji ovise o apstrakcijama.

r
Prednosti
Labava povezanost (loose coupling)
Jednostavno testiranje s mock objektima
Laka zamjena implementacija
Dependency Injection pattern
_

Inverzija ovisnosti

[(_. ALGEBRA

gl

. Dependency Inversion

Il Konkretna implementacija

public class MySQLBaza {

public void spremi (String podaci) {
// MySQL specifidna logika
connection.execute ("INSERT...");

}

}

public class KorisnikServis ({

private MySQLBaza baza

new MySQLBaza () ;7

public void registriraj (Korisnik k) {
// Validacija...

baza.spremi (k.toString()) ;
}
}

@Test
void testRegistracije() {
KorisnikServis servis = new KorisnikServis();

servis.registriraj (korisnik);

}

L(_ ALGEBRA

LOSE

Cvrsta veza s konkretnom klasom
Nemogucée unit testiranje

Promjena baze = promjena koda

Direktna ovisnost

High-level modul o low-level modulu

. Dependency Inversion

Il Apstrakcija

public interface IBaza {
void spremi (String podaci) ;
String dohvati (int id);
}

public void spremi (String p) {
/* MySQL */ }

public String dohvati (int id) { ... }
)

public class MongoDBBaza implements IBaza {
public void spremi (String p) {
/* Mongo */ }

public String dohvati (int id) { ... }

}

‘ public class MySQLBaza implements IBaza {
s

/I Dependency Injection!

public class KorisnikServis {
private final
IBaza baza; // Apstrakcija!

public KorisnikServis (
IBaza baza) {

this.baza = baza;
// Injektirano!

}

public void registriraj (Korisnik k) {
baza.spremi (k.toString());

}
k,)

Il Koristenje - lako zamijeniti!

// Produkcija
IBaza baza = new MySQLBaza();
KorisnikServis servis = new KorisnikServis (baza);

// Testiranje
IBaza mockBaza = mock (IBaza.class);
KorisnikServis test = new KorisnikServis (mockBaza);

Inverzija ovisnosti

[
A

Prednosti

Labava povezanost

Jednostavno testiranje s mock objektima
Laka zamjena implementacija

[C) ALGEBRA

Zasto primjenjivati SOLID?

v

Kvaliteta koda

Manje bugova
Bolja organizacija

Jasne odgovornosti

[(_. ALGEBRA

Odrzavanje

LakSe dodavanje znacajki
Jednostavnije refaktoriranje
Manje rizika od regresije

Dugorocna odrzivost

SOLID = Temelj profesionalnog razvoja softvera

Testiranje

Jednostavno unit testiranje
Mockanje ovisnosti
Izolacija komponenti

Veca pouzdanost

A\

Sazetak SOLID principa

Single Responsibility

Jednaklasa = jedna
odgovornost

Razdvoji odgovornosti

LC_; ALGEBRA

Open / Closed

Otvoreno za prosirenje,
zatvoreno za izmjene

Prosiri, ne mijenjaj

Liskov Substitution

Podklase zamjenjive za bazne
klase

Potpuna zamjenjivost

Interface Segregation

Vise manijih suc€elja umjesto
jednog velikog

Podijeli sucelja

Zajedno Cine temelj kvalitetnog OOP dizajna!

Dependency Inversion

Ovisi o apstrakcijama, ne
implementacijama

Injektiraj ovisnosti

Projektni zadatak

Zadatak

Implementirati sve SOLID principe u vlastiti projektni rad. Svaki ¢lan tima mora
demonstrirati primjenu svih pet principa u svojem dijelu koda. Sve promjene

potrebno je raditi na zasebnim ,feature branchevima” i sve zajedno je potrebno

,mergeati” u ,master branch”. Obvezno deployati aplikaciju na neki dostupan A A AL [T

server. Bodovi: I3 — 1 bod; I8 — 1 bod; . Razdvojene odgovornosti klasa

. Prosirive klase bez modifikacija
. Ispravno nasljedivanje
. Segregirana sucelja

Sto trebate napraviti:
. Dependency Injection

‘ Identificirati dijelove koda koji krse SOLID principe L

. Refaktorirati kod primjenom SOLID principa

<]

Cilj: Razumijeti i primijeniti SOLID u praksi

‘ Dokumentirati primjere i objasniti promjene

‘ Prezentirati prednosti koriStenja SOLID-a

LC\ ALGEBRA \

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20

