
SOLID PRINCIPI
Temelji kvalitetnog objektno orijentiranog dizajna

Programsko inženjerstvo → Vježbe



Što je SOLID?

S
Single Responsibility

Klasa ima samo jednu odgovornost i jedan razlog za promjenu

O
Open / Closed

Otvoreno za proširenja, zatvoreno za modifikacije

L
Liskov Substitution

Podklase moraju biti zamjenjive za svoje bazne klase

I
Interface Segregation

Više manjih sučelja umjesto jednog velikog

D
Dependency Inversion

Ovisnost o apstrakcijama, ne o konkretnim implementacijama



S Single Responsibility
"Klasa treba imati samo jedan razlog za promjenu."

Definicija

Svaka klasa ili modul trebaju imati samo jednu odgovornost - jedan razlog za promjenu. 

Ako klasa ima više odgovornosti, promjena jedne može utjecati na druge.

Prednosti

Manje testnih slučajeva po klasi

Manje ovisnosti između komponenti

Lakše razumijevanje i održavanje koda

Jednostavnije refaktoriranje

Loše: Više odgovornosti

KorisnikMenadzer

podaci + baza + email + PDF

Dobro: Jedna odgovornost

Korisnik Repository EmailServis PDFGenerator

Ključno: Jedna promjena = jedna klasa



S Single Responsibility LOŠE

// Klasa s previše odgovornosti!

public class Korisnik {

 private String ime, email;

 

 

// 1. Upravljanje podacima

 public void setIme(String ime) {

 this.ime = ime;

 }

 public String getIme() { return ime; }

 

 

// 2. Baza podataka

 public void spremiUBazu() {

 Connection conn = getConnection();

 ps.executeUpdate();

 }

 

 

// 3. Slanje emaila

 public void posaljiEmail() { email.send(); }

 

 

// 4. Generiranje izvještaja

 public String generirajPDF() { return "..."; }

 }

Problemi

4 razloga za promjenu klase

Teško testiranje

Visoka povezanost

Kod se ne može ponovno koristiti

Što ako...

Promijenimo bazu podataka?

Trebamo drugi email servis?

Format izvještaja se mijenja?

Jedna promjena = cijela klasa se mijenja



S Single Responsibility DOBRO

// Samo podaci korisnika

public class Korisnik {

 private String ime;

 private String email;

 

 public String getIme() { return ime; }

 public void setIme(String ime) {

 this.ime = ime;

 }

 }

// Samo slanje emaila

public class EmailServis {

 

 public void posaljiDobrodoslicu(

 Korisnik korisnik) {

 Email email = new Email();

 email.setTo(korisnik.getEmail());

 email.send();

 }

 }

// Samo pristup bazi

public class KorisnikRepository {

 private Connection conn;

 

 public void spremi(Korisnik k) {

 PreparedStatement ps =

 conn.prepareStatement(...);

 ps.executeUpdate();

 }

 }

// Samo generiranje izvještaja

public class IzvjestajGenerator {

 

 public String generiraj(

 Korisnik korisnik) {

 return "PDF izvještaj za: "

 + korisnik.getIme();

 }

 }



O Open / Closed
"Otvoreno za proširenje, zatvoreno za modifikacije."

Definicija

Softverski entiteti (klase, moduli, funkcije) trebaju biti otvoreni za proširenje, ali zatvoreni 

za modifikacije. Nova funkcionalnost se dodaje bez mijenjanja postojećeg koda.

Kako postići?

Korištenje apstrakcija (interfaces, abstract classes)

Polimorfizam umjesto if-else lanaca

Strategy pattern, Factory pattern

Dependency Injection

Loše: Modificiramo klasu

if-else za svaki tip

Novi tip = promjena koda

Dobro: Proširujemo

Interface

|

Impl1 Impl2 +Nova

Ključno: Dodajemo klase, ne mijenjamo postojeće



O Open / Closed LOŠE

// Dodavanje novog oblika zahtijeva promjenu koda!

public class KalkulatorPovrsine {

 

 public double izracunaj(Object oblik) {

 

 

if (oblik instanceof Pravokutnik) {

 Pravokutnik p = (Pravokutnik) oblik;

 return p.sirina * p.visina;

 }

 

 

else if (oblik instanceof Krug) {

 Krug k = (Krug) oblik;

 return Math.PI * k.radius * k.radius;

 }

 

 

// Novi oblik? Moramo dodati novi else if!

 

else if (oblik instanceof Trokut) {

 // ... nova logika

 }

 

 return 0;

 }

 }

Problemi

Svaki novi oblik = promjena klase

Rastući if-else lanac

Rizik od regresije

Teško održavanje

Kršenje OCP

Klasa NIJE zatvorena za modifikacije - svaki put kad 

dodamo novi oblik, moramo mijenjati postojeći kod.

instanceof + if-else = code smell



O Open / Closed DOBRO

// Apstrakcija - sučelje

public interface Oblik {

 double izracunajPovrsinu();

 }

public class Pravokutnik implements Oblik {

 private double sirina, visina;

 public double izracunajPovrsinu() {

 return sirina * visina;

 }

 }

public class Krug implements Oblik {

 private double radius;

 public double izracunajPovrsinu() {

 return Math.PI * radius * radius;

 }

 }

// Novi oblik - bez promjene koda!

public class Trokut implements Oblik {

 private double baza, visina;

 public double izracunajPovrsinu() {

 return (baza * visina) / 2;

 }

 }

// Kalkulator - nikad se ne mijenja!

public class KalkulatorPovrsine {

 public double izracunaj(Oblik o) {

 return o.izracunajPovrsinu();

 }

 }

Arhitektura

Oblik (interface)

|

Pravokutnik Krug + Novi

Rezultat

Novi oblici bez promjena koda

Polimorfizam u akciji



L Liskov Substitution
"Podklase moraju biti zamjenjive za svoje bazne klase."

Definicija

Ako je klasa B podklasa klase A, tada objekte klase A možemo zamijeniti objektima 

klase B bez narušavanja ispravnosti programa.

Pravila

Podklasa ne smije suziti ponašanje bazne klase

Preduvjeti ne smiju biti jači u podklasi

Postuvjeti ne smiju biti slabiji u podklasi

Invarijante moraju biti očuvane

Klasičan primjer kršenja

Kvadrat nasljeđuje Pravokutnik - ali kvadrat ima drugačija ograničenja (a=b), što može 

srušiti kod koji očekuje pravokutnik.

Princip zamjenjivosti

Bazna

Klasa

zamjenjivo

Pod

Klasa

Ključno: Program mora raditi jednako ispravno bilo da koristi 

objekt bazne klase ili podklase



L Liskov Substitution LOŠE

public class Pravokutnik {

 protected int sirina, visina;

 public void setSirina(int s) { this.sirina = s; }

 public void setVisina(int v) { this.visina = v; }

 public int getPovrsina() { return sirina * visina; }

 }

// Kvadrat "je" pravokutnik - ili nije?

public class Kvadrat extends Pravokutnik {

 @Override

 public void setSirina(int s) {

 this.sirina = s;

 this.visina = s; 

// Neočekivano!

 }

 @Override

 public void setVisina(int v) {

 this.visina = v;

 this.sirina = v; 

// Neočekivano!

 }

 }
// Ovaj kod NE radi s Kvadratom!

void testirajPravokutnik(Pravokutnik p) {

 p.setSirina(5); p.setVisina(4);

 assert p.getPovrsina() == 20; 

// FAIL!

 } // Kvadrat: 4x4=16, nikad 20!

Problem

Matematički: Kvadrat JE pravokutnik

Programski: NIJE zamjenjiv!

Očekivano vs. Stvarno

5x4=20

očekivano

4x4=16

Kvadrat

Pouka: Nasljeđivanje nije uvijek pravi izbor



L Liskov Substitution DOBRO

// Zajedničko sučelje

public interface Oblik {

 double getPovrsina();

 double getOpseg();

 }

public class Pravokutnik implements Oblik {

 private final int sirina, visina; 

// immutable

 public Pravokutnik(int s, int v) { ... }

 public double getPovrsina() { return sirina*visina; }

 public double getOpseg() { return 2*(sirina+visina); }

 }

// Kvadrat - vlastita implementacija!

public class Kvadrat implements Oblik {

 private final int stranica;

 public Kvadrat(int s) { this.stranica = s; }

 public double getPovrsina() { return stranica*stranica; }

 public double getOpseg() { return 4*stranica; }

 }

// Ovo radi s BILO kojim oblikom!

void ispisiInfo(Oblik o) {

 System.out.println("Površina: " + o.getPovrsina());

 }

 ispisiInfo(new Pravokutnik(5, 4)); 

// OK!

 ispisiInfo(new Kvadrat(5)); 

// OK!

Ispravna hijerarhija

interface Oblik

|

Pravokutnik Kvadrat

Zašto ovo radi

Immutable objekti - nema settera

Kompozicija umjesto nasljeđivanja

Sučelje definira ponašanje

Potpuna zamjenjivost - svaki Oblik radi jednako



I Interface Segregation
"Klijenti ne smiju ovisiti o metodama koje ne koriste."

Definicija

Bolje je imati više manjih, specifičnih sučelja nego jedno veliko opće sučelje. Klase 

ne bi trebale biti prisiljene implementirati metode koje ne koriste.

Prednosti

Manje ovisnosti između komponenti

Lakše testiranje i održavanje

Fleksibilnije dizajn

Nema praznih implementacija

Fat Interface

IJednoVelikoSucelje

10+ metoda

Segregirana sučelja

ISucelje1 ISucelje2 ISucelje3

Svako s 2-3 metode



I Interface Segregation LOŠE

// "Fat interface" - previše metoda!

public interface IMultifunkcionalniUredaj {

 void ispisi(Dokument d);

 void skeniraj(Dokument d);

 void faksiraj(Dokument d);

 void kopiraj(Dokument d);

 void posaljiEmail(Dokument d);

 }

// Moderni printer - sve koristi

public class ModerniPrinter

 implements IMultifunkcionalniUredaj {

 public void ispisi(Dokument d) { 

/* OK */ }

 public void skeniraj(Dokument d) { 

/* OK */ }

 public void faksiraj(Dokument d) { 

/* OK */ }

 // ... sve metode implementirane

 }

// Stari printer - MORA implementirati SVE!

public class StariPrinter

 implements IMultifunkcionalniUredaj {

 public void ispisi(Dokument d) { 

/* OK */ }

 public void skeniraj(Dokument d) {

 

throw new UnsupportedOperationException();

 }

 // ... prazne metode ili iznimke

 }

Problemi

Klase ovise o metodama koje ne koriste

Prazne implementacije ili iznimke

Kršenje LSP principa

Fat Interface

IMultifunkcionalniUredaj

5 metoda!

|

Moderni Stari

Stari printer MORA implementirati metode koje nikad 

neće koristiti



I Interface Segregation DOBRO

public interface IPrinter {

 void ispisi(Dokument d);

 }

public interface IScanner {

 void skeniraj(Dokument d);

 }

public interface IFax {

 void faksiraj(Dokument d);

 }

// Implementira SVE što treba

public class ModerniPrinter

 implements IPrinter, IScanner, IFax {

 public void ispisi(Dokument d) { ... }

 public void skeniraj(Dokument d) { ... }

 public void faksiraj(Dokument d) { ... }

 }

// Implementira SAMO što može

public class StariPrinter implements IPrinter {

 public void ispisi(Dokument d) { ... }

 

// Nema praznih metoda!

 }

Segregirana sučelja

IPrinter IScanner IFax

|

Moderni

sve 3

Stari

samo 1

Prednosti

Klase ovise samo o onome što koriste

Nema praznih implementacija

Lakše testiranje i održavanje

Više manjih sučelja umjesto jednog velikog



D Dependency Inversion
"Ovisi o apstrakcijama, ne o konkretnim implementacijama."

Definicija

High-level moduli ne smiju ovisiti o low-level modulima. Oba trebaju ovisiti o 

apstrakcijama. Apstrakcije ne smiju ovisiti o detaljima - detalji ovise o apstrakcijama.

Prednosti

Labava povezanost (loose coupling)

Jednostavno testiranje s mock objektima

Laka zamjena implementacija

Dependency Injection pattern

Tradicionalna ovisnost

High-level modul

|

ovisi direktno o

v

Low-level modul

Inverzija ovisnosti

High-level modul

|

Apstrakcija (interface)

^

Low-level modul



D Dependency Inversion LOŠE

// Konkretna implementacija

public class MySQLBaza {

 public void spremi(String podaci) {

 // MySQL specifična logika

 connection.execute("INSERT...");

 }

 }

// Direktna ovisnost o konkretnoj klasi!

public class KorisnikServis {

 

 

// Čvrsta veza s MySQLBaza!

 private MySQLBaza baza = new MySQLBaza();

 

 public void registriraj(Korisnik k) {

 // Validacija...

 baza.spremi(k.toString());

 }

 }

// Kako testirati bez prave baze?!

@Test

 void testRegistracije() {

 KorisnikServis servis = new KorisnikServis();

 

// Automatski kreira MySQLBaza!

 

// Ne možemo koristiti mock!

 servis.registriraj(korisnik);

 }

Problemi

Čvrsta veza s konkretnom klasom

Nemoguće unit testiranje

Promjena baze = promjena koda

Direktna ovisnost

KorisnikServis

|

ovisi o

v

MySQLBaza

High-level modul ovisi o low-level modulu



D Dependency Inversion DOBRO

// Apstrakcija

public interface IBaza {

 void spremi(String podaci);

 String dohvati(int id);

 }

public class MySQLBaza implements IBaza {

 public void spremi(String p) { 

/* MySQL */ }

 public String dohvati(int id) { ... }

 }

public class MongoDBBaza implements IBaza {

 public void spremi(String p) { 

/* Mongo */ }

 public String dohvati(int id) { ... }

 }

// Dependency Injection!

public class KorisnikServis {

 private final 

IBaza baza; // Apstrakcija!

 

 public KorisnikServis(

IBaza baza) {

 this.baza = baza; 

// Injektirano!

 }

 public void registriraj(Korisnik k) {

 baza.spremi(k.toString());

 }

 }

// Korištenje - lako zamijeniti!

// Produkcija

 IBaza baza = new MySQLBaza();

 KorisnikServis servis = new KorisnikServis(baza);

 

 

// Testiranje

 IBaza mockBaza = mock(IBaza.class);

 KorisnikServis test = new KorisnikServis(mockBaza);

Inverzija ovisnosti

KorisnikServis

|

IBaza (interface)

^

MySQL Mongo Mock

Prednosti

Labava povezanost

Jednostavno testiranje s mock objektima

Laka zamjena implementacija



Zašto primjenjivati SOLID?

✓

Kvaliteta koda

Čišći i razumljiviji kod

Manje bugova

Bolja organizacija

Jasne odgovornosti

Održavanje

Lakše dodavanje značajki

Jednostavnije refaktoriranje

Manje rizika od regresije

Dugoročna održivost

Testiranje

Jednostavno unit testiranje

Mockanje ovisnosti

Izolacija komponenti

Veća pouzdanost

SOLID = Temelj profesionalnog razvoja softvera



Sažetak SOLID principa

S

Single Responsibility

Jedna klasa = jedna 

odgovornost

Razdvoji odgovornosti

O

Open / Closed

Otvoreno za proširenje, 

zatvoreno za izmjene

Proširi, ne mijenjaj

L

Liskov Substitution

Podklase zamjenjive za bazne 

klase

Potpuna zamjenjivost

I

Interface Segregation

Više manjih sučelja umjesto 

jednog velikog

Podijeli sučelja

D

Dependency Inversion

Ovisi o apstrakcijama, ne 

implementacijama

Injektiraj ovisnosti

Zajedno čine temelj kvalitetnog OOP dizajna!



Projektni zadatak

Zadatak

Implementirati sve SOLID principe u vlastiti projektni rad. Svaki član tima mora 

demonstrirati primjenu svih pet principa u svojem dijelu koda. Sve promjene 

potrebno je raditi na zasebnim „feature branchevima” i sve zajedno je potrebno 

„mergeati” u „master branch”. Obvezno deployati aplikaciju na neki dostupan 

server. Bodovi: I3 – 1 bod; I8 – 1 bod;

Što trebate napraviti:

1 Identificirati dijelove koda koji krše SOLID principe

2 Refaktorirati kod primjenom SOLID principa

3 Dokumentirati primjere i objasniti promjene

4 Prezentirati prednosti korištenja SOLID-a

Checklist za svaki princip

S Razdvojene odgovornosti klasa

O Proširive klase bez modifikacija

L Ispravno nasljeđivanje

I Segregirana sučelja

D Dependency Injection

Cilj: Razumjeti i primijeniti SOLID u praksi


	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20

