PROGRAMSKO INZENJERSTVO

Design Patterns

Laboratorijske vjezbe

Sto su oblikovni obrasci?

Provjerena rjeSenja za Ceste probleme u dizajnu softvera

Structural

Kako sastaviti objekte i klase u vece strukture

Adapter, Decorator, Facade, Proxy

(ceamonat) Kreacijski obrasci

Singleton Factory Method SleE Prototype

Osigurava samo jednu instancu klase s Konstrukcija kompleksnih objekata korak po
J) Delegira kreiranje objekata podklasama . £ L P

Kloniranje postojecih objekata
globalnim pristupom korak ranje postojeci)

@& Singleton Pattern

public class DatabaseConnection {

private static DatabaseConnection instance;
private DatabaseConnection() {
System.out.printin("Konekcija");

}

public static DatabaseConnection
getinstance() {

if (instance == null)

instance = new DatabaseConnection();
return instance;

Kada koristiti?

*Samo jedna instanca u aplikaciji
*Globalni pristup instanci
*Kontrola zajednickih resursa

4 Primjeri

*Logger - sustav logiranja
*Database - connection pool
*Config - postavke aplikacije

}

[A\ Thread-safe: koristi synchronized

}

Singleton Pattern

Singleton <

- instance: Singleton

- Singleton()

Client =>| + getinstance(): Singleton

if (instance == null) {
// Note: if you're creating an app with
// multithreading support, you should
// place a thread lock here.
instance = new Singleton()

}

return instance

(emew) Factory Method Pattern

interface Animal { # Kada koristiti?

String speak(); +Tip objekta nije poznat unaprijed

} «Zelimo delegirati kreiranje podklasama
class Dog implements Animal { Potrebna fleksibilnost u kreiranju
public String speak() {

return "Vau!"™; 4 Primjeri

} -DocumentFactory - PDF, Word

} «UIFactory - Button, TextField
abstract class AnimalFactory { *LoggerFactory - File, Console

abstract Animal createAnimal();

} [® Koristi interface za maksimalnu fleksibilnost

Factory Method Pattern

Product p = createProduct()
p.doStuff()

Creator

+ someOperation()
+ createProduct(): Product

A

->| Product

«interface»

+ doStuff()

ConcreteCreatorA

ConcreteCreatorB Concrete Concrete

ProductA ProductB

+ createProduct(): Product

+ createProduct(): Product

return new ConcreteProductA()

(&= Builder Pattern

class Pizza {

private String dough, sauce, topping;
static class Builder {

private Pizza pizza = new Pizza();
Builder dough(String d) {
pizza.dough = d; return this;

Kada koristiti?

*Objekt ima mnogo opcionalnih
parametara

«Zelimo &itljiv fluent API

*Korak-po-korak konstrukcija

} S
: : : Primjeri
Pizza build() { return pizza; } Y i . i
) «StringBuilder - Java
) *HttpRequest.Builder

// Koristenje: Lombok @Builder

Pizza p = new Pizza.Builder()
.dough("thin").build();

Strukturni obrasci

Adapter

Omogucuje suradnju nekompatibilnih sucelja

Proxy

Zamjenski objekt koji kontrolira pristup

Decorator

Dinamicki dodaje nove funkcionalnosti objektu

Composite

Tretira pojedinacne objekte i kompozicije uniformno

Facade

Jednostavno sucelje za kompleksni podsustav

Bridge

Odvaja apstrakciju od implementacije

Adapter Pattern

interface MediaPlayer {

void play(String file);

}

class VicPlayer {

void playVic(String f) {...}

}

class VIicAdapter implements MediaPlayer {
private VicPlayer vic = new VicPlayer();
public void play(String file) {
vlc.playVic(file);

A Kada Koristiti?
Integracija legacy koda
*Koristenje external libraryja
*Nekompatibilna sucelja

4 Primjeri
*Arrays.asList() - Java
*InputStreamReader
+JDBC Driver

}

[“ Adapter = "prijevod" izmedu sucelja

}

(swewra) Adapter Pattern

«interface»
Client Interface

Client >
+ method(data)
A

i

'

H

Adapter Service

- adaptee: Service >
+ method(data) + serviceMethod(specialData)

specialData = convertToServiceFormat(data)
return adaptee.serviceMethod(specialData)

Decorator Pattern

interface Coffee {

double cost();

}

class Espresso implements Coffee {
public double cost() { return 1.5; }

}

class MilkDecorator implements Coffee {
private Coffee coffee;
MilkDecorator(Coffee c) { coffee = c; }
public double cost() {

return coffee.cost() + 0.5;

}
}

Kada koristiti?

*Dinamicko dodavanje funkcionalnosti
Alternativa nasljedivanju
*Kombiniranje ponasanja

4 Primjeri
*BufferedinputStream
*Collections.synchronizedList
*Spring @Transactional

[I Decorator "omotava" objekt dodatnom funkcijom

(swiewmac) Decorator Pattern

a = new ConcComponent()

b = new ConcDecoratorl(a)

¢ = new ConcDecorator2(b)

)4 c.execute()

// Decorator -> Decorator -> Component

Client

«interface»
Component

A

+ execute()

Concrete Base Decorator

Component

- wrappee: Component <

+ BaseDecorator(c: Component) wrappee = ¢
+ execute() + execute()

4 wrappee.execute()
Concrete [
Decorators

+ execute() o 1 super:execute()
+ extra() extra)
-

Facade Pattern

class CPU { void start() {...} } # Kada koristiti?

class Memory { void load() {...} } «Skrivanje kompleksnosti podsustava
class HardDrive { void read() {...} } «Jedna ulazna tocka za viSe klasa
class ComputerFacade { Pojednostavljivanje API-ja

private CPU cpu = new CPU();

private Memory mem = new Memory(); 4 Primjeri

private HardDrive hd = new HardDrive(); *SLF4J - logging facade

void startComputer() { -EntityManager - JPA

cpu.start(); mem.load(); hd.read(); RestTemplate - Spring

}

} [& Facade = "ulazna vrata" u kompleksni sustav

Obrasci ponasanja

Observer

Obavjestava pretplacene objekte o
promjenama

State

Mijenja ponasanje ovisno o stanju

Strategy

Definira obitelj algoritama koji se mogu
izmjenjivati

Iterator

Sekvencijalni pristup elementima

Template

Definira kostur algoritma, koraci u podklasama

Mediator

Centralizira kompleksnu komunikaciju

Command

Enkapsulira zahtjev kao objekt

Chain

Lanac rukovatelja zahtjevima

Observer Pattern

interface Observer {

void update(String news);

}

class NewsAgency {

private List<Observer> observers = new ArrayList<>();
void addObserver(Observer o) {

observers.add(o);

}

void setNews(String news) {

observers.forEach(o -> o.update(news));

A Kada Koristiti?
*Publish-subscribe scenariji
*Event handling sustavi
*Reaktivne aplikacije

4 Primjeri
*PropertyChangeListener
*RxJava Observable
*Spring Events

}

[£ "Pretplata" na promjene stanja objekta

}

ssnvioral . Observer Pattern

Publisher -
«interface»
- subscribers: Subscriber(] >—>>| Subscriber
foreach (s in subscribers) - mainState + update(context)
s.update(this) + subscribe(s: Subscriber) A
+ unsubscribe(s: Subscriber)]
mainState = newState i i
notifySubscribers) . qu.',%i‘f.’iii'sbﬂé ioco Concrete
Subscribers

)

-
-

s = new ConcreteSubscriber()

publisher.subscribe(s) * update(cantex)

4 {
s

Strategy Pattern

interface PaymentStrategy {

void pay(int amount);

}

class CreditCard implements PaymentStrategy {
public void pay(int amt) {
System.out.printin("Card: " + amt);

A Kada Koristiti?

*ViSe algoritama za isti zadatak
*|zbor algoritma u runtime
«Zamjena za switch/if-else

i 4 Primjeri
class ShoppingCart { sComparator - sortiranje

private PaymentStrategy strategy; Validator - validacia

void setStrategy(PaymentStrategy s) { *Compression - ZIP, RAR

strategy = s;

[B Mijenja algoritam "u hodu" bez promjene klijenta

}
}

Template Method Pattern

abstract class DataMiner {
/[Template method

final void mine() {
openFile();

extractData();
parseData();

closeFile();

}

abstract void openFile();
abstract void extractData();
void parseData(){ ... }
void closeFile() { ... }

}

A Kada Koristiti?

*Isti algoritam, razliCiti koraci
*Definiranje "kostura" operacije
*Kontrola redoslijeda koraka

4 Primjeri

*HttpServlet - doGet, doPost
+JUnit @Before - setUp
*AbstractList

[B final metoda osigurava redoslijed koraka

Koji pattern odabrati?

Singleton vs Factory Builder vs Factory

Singleton: jedna instanca | Factory: fleksibilno kreiranje vise tipova Builder: kompleksni objekti korak-po-korak | Factory: jednostavno kreiranje
Adapter vs Decorator Facade vs Adapter

Adapter: promjena sucelja | Decorator: dodavanje funkcionalnosti Facade: pojednostavljenje API-ja | Adapter: kompatibilnost sucelja
Strategy vs Template Observer vs Mediator

Strategy: cijeli algoritam | Template: samo koraci algoritma Observer: 1-to-many obavijesti | Mediator: centralizirana komunikacija

¥ Savjet: Kombinacija patterna &esto daje najbolje rezultate!

PROGRAMSKO INZENJERSTVO

Projektni zadatak

Implementirajte aplikaciju koriste¢i minimalno 3 design patterna iz razlicitih kategorija

- 1x Structural 1x Behavioral

 Svaki ¢lan tima mora u svom dijelu projekta
implementirati po jedan oblikovni obrazac iz svake
od kategorije (13 — 1 bod i 18 — 1 bod)

- v

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21

