
PROGRAMSKO INŽENJERSTVO

Design Patterns
Laboratorijske vježbe



Što su oblikovni obrasci?
Provjerena rješenja za česte probleme u dizajnu softvera

Creational
Structural Behavioral



CREATIONAL Kreacijski obrasci

Singleton

Osigurava samo jednu instancu klase s 

globalnim pristupom

Factory Method

Delegira kreiranje objekata podklasama

Builder

Konstrukcija kompleksnih objekata korak po 

korak

Prototype

Kloniranje postojećih objekata



CREATIONAL Singleton Pattern

public class DatabaseConnection {

private static DatabaseConnection instance;

private DatabaseConnection() {

System.out.println("Konekcija");

}

public static DatabaseConnection

getInstance() {

if (instance == null)

instance = new DatabaseConnection();

return instance;

}

}

Kada koristiti?

•Samo jedna instanca u aplikaciji

•Globalni pristup instanci

•Kontrola zajedničkih resursa

Primjeri

•Logger - sustav logiranja

•Database - connection pool

•Config - postavke aplikacije

Thread-safe: koristi synchronized



CREATIONAL Singleton Pattern



CREATIONAL Factory Method Pattern

interface Animal {

String speak();

}

class Dog implements Animal {

public String speak() {

return "Vau!";

}

}

abstract class AnimalFactory {

abstract Animal createAnimal();

}

Kada koristiti?

•Tip objekta nije poznat unaprijed

•Želimo delegirati kreiranje podklasama

•Potrebna fleksibilnost u kreiranju

Primjeri

•DocumentFactory - PDF, Word

•UIFactory - Button, TextField

•LoggerFactory - File, Console

Koristi interface za maksimalnu fleksibilnost



CREATIONAL Factory Method Pattern



CREATIONAL Builder Pattern

class Pizza {

private String dough, sauce, topping;

static class Builder {

private Pizza pizza = new Pizza();

Builder dough(String d) {

pizza.dough = d; return this;

}

Pizza build() { return pizza; }

}

}

// Korištenje:

Pizza p = new Pizza.Builder()

.dough("thin").build();

Kada koristiti?

•Objekt ima mnogo opcionalnih 

parametara

•Želimo čitljiv fluent API

•Korak-po-korak konstrukcija

Primjeri

•StringBuilder - Java

•HttpRequest.Builder

•Lombok @Builder



STRUCTURAL Strukturni obrasci

Adapter

Omogućuje suradnju nekompatibilnih sučelja

Decorator

Dinamički dodaje nove funkcionalnosti objektu

Facade

Jednostavno sučelje za kompleksni podsustav

Proxy

Zamjenski objekt koji kontrolira pristup

Composite

Tretira pojedinačne objekte i kompozicije uniformno

Bridge

Odvaja apstrakciju od implementacije



STRUCTURAL Adapter Pattern

interface MediaPlayer {

void play(String file);

}

class VlcPlayer {

void playVlc(String f) {...}

}

class VlcAdapter implements MediaPlayer {

private VlcPlayer vlc = new VlcPlayer();

public void play(String file) {

vlc.playVlc(file);

}

}

Kada koristiti?

•Integracija legacy koda

•Korištenje external libraryja

•Nekompatibilna sučelja

Primjeri

•Arrays.asList() - Java

•InputStreamReader

•JDBC Driver

Adapter = "prijevod" između sučelja



STRUCTURAL Adapter Pattern



STRUCTURAL Decorator Pattern

interface Coffee {

double cost();

}

class Espresso implements Coffee {

public double cost() { return 1.5; }

}

class MilkDecorator implements Coffee {

private Coffee coffee;

MilkDecorator(Coffee c) { coffee = c; }

public double cost() {

return coffee.cost() + 0.5;

}

}

Kada koristiti?

•Dinamičko dodavanje funkcionalnosti

•Alternativa nasljeđivanju

•Kombiniranje ponašanja

Primjeri

•BufferedInputStream

•Collections.synchronizedList

•Spring @Transactional

Decorator "omotava" objekt dodatnom funkcijom



STRUCTURAL Decorator Pattern



STRUCTURAL Facade Pattern

class CPU { void start() {...} }

class Memory { void load() {...} }

class HardDrive { void read() {...} }

class ComputerFacade {

private CPU cpu = new CPU();

private Memory mem = new Memory();

private HardDrive hd = new HardDrive();

void startComputer() {

cpu.start(); mem.load(); hd.read();

}

}

Kada koristiti?

•Skrivanje kompleksnosti podsustava

•Jedna ulazna točka za više klasa

•Pojednostavljivanje API-ja

Primjeri

•SLF4J - logging facade

•EntityManager - JPA

•RestTemplate - Spring

Facade = "ulazna vrata" u kompleksni sustav



BEHAVIORAL Obrasci ponašanja

Observer

Obavještava pretplaćene objekte o 

promjenama

Strategy

Definira obitelj algoritama koji se mogu 

izmjenjivati

Template

Definira kostur algoritma, koraci u podklasama

Command

Enkapsulira zahtjev kao objekt

State

Mijenja ponašanje ovisno o stanju

Iterator

Sekvencijalni pristup elementima

Mediator

Centralizira kompleksnu komunikaciju

Chain

Lanac rukovatelja zahtjevima



BEHAVIORAL Observer Pattern

interface Observer {

void update(String news);

}

class NewsAgency {

private List<Observer> observers = new ArrayList<>();

void addObserver(Observer o) {

observers.add(o);

}

void setNews(String news) {

observers.forEach(o -> o.update(news));

}

}

Kada koristiti?

•Publish-subscribe scenariji

•Event handling sustavi

•Reaktivne aplikacije

Primjeri

•PropertyChangeListener

•RxJava Observable

•Spring Events

"Pretplata" na promjene stanja objekta



BEHAVIORAL Observer Pattern



BEHAVIORAL Strategy Pattern

interface PaymentStrategy {

void pay(int amount);

}

class CreditCard implements PaymentStrategy {

public void pay(int amt) {

System.out.println("Card: " + amt);

}

}

class ShoppingCart {

private PaymentStrategy strategy;

void setStrategy(PaymentStrategy s) {

strategy = s;

}

}

Kada koristiti?

•Više algoritama za isti zadatak

•Izbor algoritma u runtime

•Zamjena za switch/if-else

Primjeri

•Comparator - sortiranje

•Validator - validacija

•Compression - ZIP, RAR

Mijenja algoritam "u hodu" bez promjene klijenta



BEHAVIORAL Template Method Pattern

abstract class DataMiner {

// Template method

final void mine() {

openFile();

extractData();

parseData();

closeFile();

}

abstract void openFile();

abstract void extractData();

void parseData() { ... }

void closeFile() { ... }

}

Kada koristiti?

•Isti algoritam, različiti koraci

•Definiranje "kostura" operacije

•Kontrola redoslijeda koraka

Primjeri

•HttpServlet - doGet, doPost

•JUnit @Before - setUp

•AbstractList

final metoda osigurava redoslijed koraka



Koji pattern odabrati?

Singleton vs Factory

Singleton: jedna instanca | Factory: fleksibilno kreiranje više tipova

Builder vs Factory

Builder: kompleksni objekti korak-po-korak | Factory: jednostavno kreiranje

Adapter vs Decorator

Adapter: promjena sučelja | Decorator: dodavanje funkcionalnosti

Facade vs Adapter

Facade: pojednostavljenje API-ja | Adapter: kompatibilnost sučelja

Strategy vs Template

Strategy: cijeli algoritam | Template: samo koraci algoritma

Observer vs Mediator

Observer: 1-to-many obavijesti | Mediator: centralizirana komunikacija

Savjet: Kombinacija patterna često daje najbolje rezultate!



PROGRAMSKO INŽENJERSTVO

Projektni zadatak

Implementirajte aplikaciju koristeći minimalno 3 design patterna iz različitih kategorija

1x Creational 1x Structural 1x Behavioral

• Svaki član tima mora u svom dijelu projekta 

implementirati po jedan oblikovni obrazac iz svake 

od kategorije (I3 – 1 bod i I8 – 1 bod)


	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21

