
PROGRAMSKO INŽENJERSTVO

Modeliranje arhitekture

UML dijagram razreda

doc. dr. sc. Aleksander Radovan

prof. struč. stud., dipl. ing.

2025/2026



Sadrzaj

DIO 1

Arhitektura softvera

DIO 2

C4 Model

DIO 3

UML Class Diagram

DIO 4

Odnosi medu razredima

DIO 5

Sučelja i nasljedivanje

DIO 6

SOLID principi

Sadržaj



Od zahtjeva do koda

ZAHTJEVI

Sto sustav treba raditi?

→
ARHITEKTURA

Kako je sustav strukturiran?

→
KOD

Implementacija rjesenja

Problem:

Veliki raskorak izmedu problema i rjesenja - arhitektura premoscuje taj jaz!

Uvod



Level 1: Context Diagram - Spotify

Oblikovanje arhitekture programske potpore

• Proces identificiranja i strukturiranja podsustava koji 
čine cjelinu te okruženja za upravljanje i komunikaciju 
između podsustava
• rezultat procesa oblikovanja je opis/dokumentacija 

arhitekture programske potpore.



Zasto je arhitektura vazna?

Smanjuje troškove

Cijena razvoja i održavanja pada kad je struktura jasna od početka

Razjašnjava zahtjeve

Prisiljava tim da jasno definira što sustav treba raditi

Rano otkrivanje grešaka

Greška u arhitekturi je skupa – bitno rano otkrivanje

Omogućuje re-use

Dobro strukturirane komponente možeš koristiti u drugim projektima

Poboljšava komunikaciju

Dijagrami su bolji od tisuće rijeci za nove članove tima

Olakšava skaliranje

TikTok ima milijardu korisnika - to je rezultat dobre arhitekture

Prednosti definiranja arhitekture



C4 Model - Pregled

C4 model je način vizualizacije softverske arhitekture na 4 razine apstrakcije - 

kao Google Maps za kod!

Level 1: Context - Tko koristi sustav?

Level 2: Container - Koji su glavni dijelovi?

Level 3: Component - Što je unutar dijelova?

Level 4: Code - Kako izgleda kod (UML)?

Google Maps vam pokazuje Hrvatsku, Zagreb, centar, pa ulicu - isto kao C4!

Level 1: Context

↓

Level 2: Container

↓

Level 3: Component

↓

Level 4: Code (UML)

C4 model arhitekture



Level 1: Context Diagram - Spotify

Pokazuje tko koristi sustav i s kojim vanjskim sustavima 

komunicira.

Primjer: Spotify

Korisnici: slusatelji, umjetnici

Vanjski sustavi: Facebook, PayPal, glazbene kuce

Pitanje: Tko koristi ovaj sustav i sa čime komunicira?

Slušatelj Umjetnik

Spotify - Music Streaming

Facebook Login PayPal Music Labels

C4 model arhitekture



Level 1: Context Diagram - SpotifyC4 model arhitekture – Level 1- Context

https://c4model.com/

Dijagram konteksta sustava pruža početnu točku, pokazujući kako se softverski sustav u 

opsegu uklapa u svijet oko sebe.



Level 1: Context Diagram - SpotifyC4 model arhitekture – Level 2 - Container

https://c4model.com/

Dijagram kontejnera zumira softverski sustav u opsegu, prikazujući aplikacije i pohrane 

podataka unutar njega.



Level 1: Context Diagram - SpotifyC4 model arhitekture – Level 3 - Container

https://c4model.com/

Dijagram komponenti zumira pojedinačni kontejner, prikazujući komponente unutar 

njega.



Level 1: Context Diagram - SpotifyC4 model arhitekture – Level 3 - Container

https://c4model.com/

Dijagram koda (npr. UML class diagram) može se koristiti za zumiranje pojedinačne 

komponente, prikazujući kako je ta komponenta implementirana na razini koda.



Level 1: Context Diagram - Spotify

Uloga arhitekta
• Dobar arhitekt:

• razumije potrebe poslovnog modela i zahtjeve projekta.

• svjestan različitih tehničkih pristupa u rješavanju danog problema.

• vrednuje dobre i loše strane tih pristupa.

• preslikava potrebe i vrednovane zahtjeve u tehnički opis arhitekture programske 

potpore.

• vodi razvojni tim u oblikovanju i implementaciji.

• koristiti “meke” vještine kao i tehničke vještine.

• Pogled arhitekta na programsku potporu:
• struktura kao skup implementacijskih zahtjeva

• struktura i odnosi elemenata tijekom dinamičke interakcije

• odnosi programskih struktura i okoline



Level 1: Context Diagram - Spotify

Proces izbora i vrednovanja
• Proces izbora i vrednovanja arhitekture  proces donošenja odluka
• Alternativni stilovi arhitekture programske potpore 

 Oblikovanje kao niz odluka 
• Dizajner se sučeljava s rješavanjem niza problema (engl. design issues)

• podproblemi ukupnog problema
• Više inačica rješenja 

• engl. design options
• Dizajner donosi odluke (engl. design decision) za rješavanje problema

odabir najbolje opcije između više mogućih rješenja problema



Level 1: Context Diagram - Spotify

Donošenje odluka
• Za donošenje odluka potrebna znanja:

• zahtjeva
• trenutno oblikovana arhitektura
• raspoloživa tehnologija 
• principi oblikovanja i najbolja praksa (engl. best practices) 
• dobra rješenja iz prošlosti 

• Zadaće donošenja odluka
• postavljanje prioriteta sustava
• dekompozicija sustava
• definiranje svojstava sustava
• postavljanje sustava u kontekst
• cjelovitost sustava

• Tehnička i netehnička pitanja su isprepletena!



Level 1: Context Diagram - Spotify

Prostor oblikovanja



Level 1: Context Diagram - Spotify

Arhitekturalno značajni zahtjevi

• engl. Architecturally Significant Requirement ASR, Architecture 
Drivers

• Neki zahtjevi imaju daleko dublji utjecaj na arhitekturu, a obično 
se definiraju kao arhitekturno značajni zahtjevi
• izvedeni su iz funkcionalnih i nefunkcionalnih zahtjeva
• ocijenjeni od dionika obzirom na prioritete i doseg

• uobičajena tri stupnja ocjene 
• Stil arhitekture određuju nefunkcijski zahtjevi, a funkcijski 

zahtjevi određuju instance elemenata definirane tim stilom



Level 1: Context Diagram - Spotify

Svojstva oblikovanja
• Oblikovanje arhitekture 

• podjela u podsustave i komponente
• Način povezivanja?
• Način međudjelovanja?
• Sučelja? 

• Oblikovanje klasa
• Oblikovanje korisničkog sučelja 
• Oblikovanje algoritma 

• za izračunavanje, upravljanje…
• Oblikovanje protokola 

• komunikacijski protokoli



Level 1: Context Diagram - Spotify

Principi dobrog oblikovanja

• Cilj: 
• smanjenje cijene i povećanje profita
• osiguranje sukladnosti sa zahtjevima 
• ubrzanje razvoja i implementacije
• poboljšanje kvalitete

• Uporabljivosti
• Efikasnosti
• Pouzdanosti
• Lakoće održavanja
• Ponovne uporabe



Level 1: Context Diagram - Spotify

Razvoj modela arhitekture
• Započinje s grubom skicom arhitekture 

• zasnovanoj na osnovnim zahtjevima i obrascima uporabe.

• Određuje temeljne potrebne komponente sustava

• Izabire između raznih stilova arhitekture 
• savjet: nekoliko timova nezavisno radi grubu skicu arhitekture, a potom se 

spoje najbolje ideje

• Arhitektura se dopunjava detaljima tako da se:
• identificiraju osnovni načini komunikacije i interakcije između komponenata

• odredi kako će dijelovi podataka i funkcionalnosti raspodijeliti između 
komponenata

• pokuša identificirati dijelove za ponovnu uporabu 

• vrati se na pojedini obrazac uporabe i podesi arhitekturu



Level 1: Context Diagram - Spotify

Razvoj modela arhitekture

• Za izradu modela potreban je jezik i sintaksna pravila 

➔ UML:

dijagrami razreda

dijagrami komponenti

dijagram razmještaja



UML Dijagram razreda

što je UML Class Diagram?

Strukturni statički dijagram koji prikazuje klase (razrede), njihove atribute, operacije i 

odnose medju njima.

Prikazuje:

Razrede i svojstva, atribute i operacije, odnose poput asocijacije i nasljeđivanja, sučelja i enumeracije

Alati: Astah, Visual Paradigm, draw.io, PlantUML, Mermaid

User

id: Long, username: String, email: String

login(): boolean, logout(): void

Primjer UML klase

UML Class dijagram



Razred (Class)

Što je razred?

Predložak za stvaranje objekata koji obuhvaća atribute (obilježja) i operacije 

(ponašanje).

Instagram primjer:

Razred Post ima atribute (slika, opis, broj lajkova) i metode (like, share, delete)

public class Post {

private String imageUrl;

private int likes;

public void like() { likes++; }

}

Razred vs. Objekt

RAZRED

Nacrt / Predlozak

OBJEKT

Instanca razreda

Kao recept vs. gotovo jelo

Razred (klasa)



Level 1: Context Diagram - Spotify

Atributi

• Svojstva (engl. property):

▪ Vidljivost (engl. visibility)

▪ Naziv (engl. name)

▪ Brojnost (engl. multiplicity)

▪ Vrsta (engl. type)

▪ Početna vrijednost (engl. initial value)

▪Ostala svojstva: promjenjivost, modifikatori

[visibility]name[[multiplicity]][:type][=initial value][{property}]

npr. – MyAttribute : string = „Hello”;



Level 1: Context Diagram - Spotify

Atributi - vidljivost
• Stupanj vidljivosti atributa

▪ Public (simbol: + )

- Dostupan svim razredima i paketima 

▪ Private (simbol: - )

- Dostupan samo unutar istog razreda

▪ Protected (simbol: #)

- Dostupan unutar istog i svih izvedenih razreda (koji nasljeđuju glavni razred)

▪ Package (simbol: ~ )

- Dostupan svim razredima unutar paketa



Level 1: Context Diagram - Spotify

Atributi - promjenjivost
• changeable

- Vrijednost atributa može se nesmetano mijenjati. Podrazumijevana (default) 
postavka – ne mora se posebno naznačiti.

• Rjeđe korišteni modifikatori*:

• addOnly - vrijednost atributa može se samo povećavati.

• frozen – vrijednost atributa može se promijeniti samo jednom tijekom života 
objekta (u praksi je to kod inicijalizacije)

• read-only – vrijednost atributa ne može se mijenjati izvan objekta kojemu 
pripada.



Level 1: Context Diagram - Spotify

Atributi – modifikator static
• static

- vrijednost atributa ne ovisi o životu objekta - definirana je na razini razreda. 

- atributu se pristupa preko naziva razreda (a ne instance!)

- vrijednost može biti promjenjiva ili konstantna, ovisno o tome koja mu je 

promjenjivost dodijeljena 

- final (Java) / const (C, C++, C#) – vrijednost atributa je konstantna*



Level 1: Context Diagram - Spotify

Odgovornost, operacija, metoda
• Odgovornost (eng. responsibility) je nešto što sustav mora izvršiti.

▪ Svaki funkcionalni zahtjev mora se pridijeliti nekom razredu (proizlaze iz obrazaca uporabe).

▪ Realizira se jednom ili više operacija.

• Operacije ostvaruju odgovornosti pojedinog razreda i implementiraju se 

metodama: 

▪ vidljivost: public, package, protected, private

▪ modifikatori: static, abstract

▪ istodobnost: sequential, guarded, concurrent

▪ parametri (argumenti)

▪ povratna vrijednost



Level 1: Context Diagram - Spotify

Terminologija
• Member

 
– Member variable = atribut razreda

• Isto što i member data, member field, attribute
• Instance member variable 

• vrijednost svojstvena objektu razreda

• Static member variable
• vrijednost zadana na razini razreda

– Member function = operacija razreda
• Isto što i operation, method
• Instance member function
• Static member function (class member function)



Odnosi medju razredima

Asocijacija

"koristi" / "poznaje"

User koristi Post

Agregacija (dijamant prazan)

"ima" (slaba veza)

Playlist ima Song

Kompozicija (dijamant pun)

"sadrzi" (jaka veza)

Order sadrzi OrderItem

Nasljedivanje (trokut)

"je vrsta" (IS-A)

Admin je vrsta User

Realizacija (isprekidano)

"implementira" sucelje

UserService impl IUserService

Ovisnost (isprekidano)

"ovisi o" (najslabija)

Controller ovisi o DTO

Odnosi među razredima (klasama)



Level 1: Context Diagram - Spotify
Odnosi među relacijama

• Asocijacija - Agregacija - Kompozicija

Asocijacija

Agregacija

Kompozicija



Asocijacija

Što je asocijacija?

Veza između dva razreda gdje jedan "poznaje" ili "koristi" drugi. Objekti imaju vlastiti životni 

ciklus.

Viseštrukost (multiplicity):

1 = tocčno jedan, 0..1 = nula ili jedan, * = bilo koliko, 1..* = jedan ili više, n..m = između n i m

public class User {

private List<Post> posts; // 0..*

}

Instagram primjer

User

creates

1 -------- *
Post

Jedan user kreira 0 ili više postova

Jednosmjerna: samo User zna za Post. Dvosmjerna: oba razreda znaju jedan za drugog.

Asocijacija



Nasljedivanje (Inheritance)

Sto je nasljeđivanje?

Koncept gdje podrazred preuzima atribute i metode nadrazreda. Odnos "JE-VRSTA" (IS-A).

Kljucni koncepti:

extends - Java ključna rijec za nasljeđivanje. Polimorfizam - override metoda u podrazredu. 

super - poziv metode nadrazreda. abstract - razred koji se ne može instancirati.

Java/C# ne podržavaju visestruko nasljedivanje razreda (diamond problem)

TikTok primjer

Content (abstract)

extends

Video Photo Story

public class Video extends Content {

// nasljeduje id, likes, createdAt...

private int duration;

}

Nasljeđivanje



Sucelja (Interfaces)

Što je sučelje?

Ugovor koji definira metode koje razred mora implementirati. Nema atribute ni 

implementaciju!

Prednosti:

Višestruka implementacija - razred moze implementirati više sučelja. Polimorfizam - isti kod 

radi s razlicitim impl. Loose coupling - manja ovisnost. Testabilnost - lakše mockanje.

public interface Playable {

void play();

void pause();

int getDuration();

}

Spotify primjer - Polimorfizam

<<interface>>

Playable

implements

Song Podcast Audiobook

Player moze reproducirati bilo što što implementira Playable - bez promjene koda!

Sučelje



Dobre prakse - SOLID principi

S - Single Responsibility

Razred ima samo jedan razlog za promjenu.

UserService - samo user logika

O - Open/Closed

Otvoren za proširenje, zatvoren za modifikaciju.

Dodaj novu impl. sucelja, ne mijenjaj staro

L - Liskov Substitution

Podrazred mora moci zamijeniti nadrazred.

Square ne smije extendati Rectangle

I - Interface Segregation

Vise manjih sučelja je bolje od jednog velikog.

Playable, Downloadable, Shareable

D - Dependency Inversion

Ovisi o apstrakcijama (sučeljima), ne o konkretnim razredima. High-level moduli ne ovise o low-level modulima.

Controller ovisi o IUserService, ne o UserServiceImpl

SOLID principi



Lose prakse - Antipatterns

God Class / Spaghetti

Jedan razred radi SVE - 5000+ linija koda, nemoguce za odrzavanje.

AppManager.java - 10000 linija

Tight Coupling

Razredi previše ovise jedni o drugima - promjena jednog lomi druge.

new UserService(new MySQLDB())

Copy-Paste Programming

Isti kod na 10 mjesta - bug fix = 10 promjena.

DRY princip: Don't Repeat Yourself

Wrong Inheritance

Nasljeđivanje samo radi code reuse, bez IS-A odnosa.

Stack extends ArrayList (krivo!)

Public Everything

Svi atributi public - nema enkapsulacije, bilo tko može promijeniti stanje.

public String password; (opasno!)

Rjesenje: Koristi SOLID principe, code review, refactoring

Loše prakse



Primjer: Lose vs. Dobro

LOSE - God Class

class AppManager {

// User stuff

createUser() {}

deleteUser() {}

// Video stuff

uploadVideo() {}

// Payment stuff

processPayment() {}

// ... 500+ metoda

}

Problemi: Teško testirati, nemoguće za više developera, promjena u jednom dijelu može slomiti drugi

DOBRO - Single Responsibility

class UserService {

create() {}

delete() {}

}

class VideoService {

upload() {}

}

class PaymentService { ... }

class EmailService { ... }

Prednosti: Svaki servis testiran zasebno, vise developera paralelno, jasna odgovornost

Usporedba dobre i loše prakse



Paketi (Packages)

Što su paketi?

Nacin organiziranja razreda koji suraduju ili obavljaju sličnu funkcionalnost.

Kljucne rijeci:

package com.app.users; // Java

namespace App.Users; // C#

import com.app.users.User;

using App.Users;

Paketi omogućuju (~) package vidljivost - razredi unutar paketa vide jedni druge

TikTok struktura paketa

com.tiktok

users/

User.java

UserService.java

UserRepository.java

videos/

Video.java

VideoService.java

comments/

notifications/

Paketi



Level 1: Context Diagram - Spotify

Paketi
• Razredi koji međusobno surađuju/potrebni su za obavljanje određenog 

skupa funkcionalnosti organiziraju se u pakete.

▪ Paketi mogu sadržavati druge razrede i pakete.

▪ U programskom kodu za deklariranje naziva paketa koriste se ključne riječi 

namespace (C++ i C#), package (Java).

▪ Za uvoz paketa koriste se ključne riječi using (C++ i C#) , import (Java).



Level 1: Context Diagram - Spotify

Paketi - primjer



Enumeracije (Enums)

Sto je enumeracija?

Tip podatka koji sadrzi fiksni skup vrijednosti. Koristi se za diskretne, unaprijed poznate 

opcije.

Kada koristiti enum?

Status narudžbe: PENDING, PROCESSING, SHIPPED. Tip korisnika: FREE, PREMIUM, 

ADMIN. Dani u tjednu, mjeseci, smjerovi...

public enum VideoStatus {

DRAFT,

PUBLISHED,

REMOVED,

UNDER_REVIEW

}

UML notacija

<<enumeration>>

UserType

FREE

PREMIUM

CREATOR

ADMIN

Prednost pred String: kompajler javlja gresku ako upises krivu vrijednost!

Enumeracije



Level 1: Context Diagram - Spotify

Komentari
• Unatoč formalnoj ekspresivnosti UML dijagrama razreda ponekada 

su potrebni i komentari. 

▪ Koriste se za dodatni opis svrhe nekog razreda, atributa, veza, metoda i 

drugih elemenata dijagrama ukoliko je potrebno.

▪ U komentarima je poželjno biti jasan i sažet, te obuhvatiti sve bitne aspekte 

UML elementa koji se opisuje, a koji nisu nedvosmisleno jasni iz samog 

dijagrama. 



 Alati za modeliranje

Visual Paradigm

Profesionalni CASE alat, podrška za sve UML dijagrame, code generation

visual-paradigm.com

draw.io / diagrams.net

Besplatan, web-based, integracija s Google Drive i GitHub

app.diagrams.net

PlantUML

Dijagrami iz teksta/koda! Verzioniranje u Gitu, CI/CD integracija

plantuml.com

Mermaid

Markdown dijagrami, GitHub/GitLab native podrška

mermaid.js.org

IntelliJ IDEA UML

Ugrađeno u IDE, generira dijagrame iz koda

Ultimate verzija

 Preporuka za studente: draw.io (besplatan) ili Mermaid (u GitHubu)



Level 1: Context Diagram - Spotify

Primjeri UML dijagrama



Level 1: Context Diagram - Spotify

Primjeri UML dijagrama



 Sažetak

 C4 Model

4 razine: Context → Container → Component → Code

 UML Class Diagram

Razredi, atributi (+/-/#/~), operacije, odnosi

 Odnosi

Asocijacija (─), Agregacija (◇), Kompozicija (◆), Nasljeđivanje (▷)

 Sučelja

Ugovor za implementaciju, omogućuje polimorfizam

 SOLID principi

S-R-P, O-C-P, L-S-P, I-S-P, D-I-P

 Izbjegavati

God Class, Tight Coupling, Copy-Paste, Public Everything

 Cilj: Dobra arhitektura = manji troškovi, lakše održavanje, sretni developeri!



Pitanja?

Hvala na pažnji!

Dodatni resursi:

c4model.com, uml-diagrams.org, refactoring.guru

Martin Fowler: UML Distilled, Robert C. Martin: Clean Architecture


	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46

