UML dijagram razreda

prof. stru€. stud., dipl. ing.

2025/2026
ALGEBRA

Sadrzaj

DIO 1
Arhitektura softvera

C4 Model

DIO 3

UML Class Diagram

ALGEBRA

DIO 4
Odnosi medu razredima

DIO 5
Sucdelja i nasljedivanje

SOLID principi

Uvod

B E _
&=
ZAHTJEVI KOD

Sto sustav treba raditi? Kako je sustav strukturiran? Implementacija rjesenja

Problem:

Veliki raskorak izmedu problema i riesenja - arhitektura premoscuije taj jaz!

ALGEBRA

Oblikovanje arhitekture programske potpore

* Proces identificiranja i strukturiranja podsustava koji
cine cjelinu te okruzenja za upravljanje i komunikaciju

izmedu podsustava
* rezultat procesa oblikovanja je opis/dokumentacija

LC\ ALGEBRA

Prednosti definiranja arhitekture

Smanjuje troskove Omogucuje re-use

Cijena razvoja i odrzavanja pada kad je struktura jasna od pocetka Dobro strukturirane komponente mozes koristiti u drugim projektima

Razjasnjava zahtjeve Poboljsava komunikaciju

Prisiljava tim da jasno definira Sto sustav treba raditi Dijagrami su bolji od tisuce rijeci za nove ¢lanove tima

GreSka u arhitekturi je skupa — bitno rano otkrivanje TikTok ima milijardu korisnika - to je rezultat dobre arhitekture

ALGEBRA

C4 model arhitekture

Level 1: Context

C4 model je nacin vizualizacije softverske arhitekture na 4 razine apstrakcije -
kao Google Maps za kod!

Level 3: Component

Google Maps vam pokazuje Hrvatsku, Zagreb, centar, pa ulicu - isto kao C4!

Level 4: Code (UML)

ALGEBRA

C4 model arhitekture

Pokazuje tko koristi sustav i s kojim vanjskim sustavima
komunicira.

Slu$atelj
Primjer: Spotify
Korisnici: slusatelji, umjetnici

Vanijski sustavi: Facebook, PayPal, glazbene kuce Spotify - Music Streaming

oristi ovaj sustav i sa ¢ime
Facebook Login Music Labels

ALGEBRA

C4 model arhitekture — Level 1- Context

Dijagram konteksta sustava pruza pocetnu tocku, pokazujuci kako se softverski sustav u

opsegu uklapa u svijet oko sebe.

Personal Banking
Customer

! Sends e-mails to
1 b * -
Views account balances S~
and makes payments -
using
: Amazon Web Services
v Simple Email Service
- Cloud-based email service

Sends e-mails to =

provider
_ - — customers using

~ = Gets bank account
information from and
makes payments using = = = _ .

iew: Internet Banking System

for a fictional Internet Banking System | Simon Brown | cdmodel.com

ALGEBRA

Amazon Web Services

Simple Email Service

Ireland .

sg:
United
Kingdom
e of Man
e S Hull
Liver
s
b
England
Wal
onge
: B 0

Bruges ANWERY

nternet Banking Syster

Amsterdam
o

"""“"'Netherlg_nds“ b _' R

°
Brussels
o

Belgium

Person, Customer

https://c4model.com/

Relationship

) Austria

C4 model arhitekture — Level 2 - Container

Dijagram kontejnera zumira softverski sustav u opsegu, prikazujudi aplikacije i pohrane

podataka unutar njega.

LC\ ALGEBRA https://c4model.com/

C4 model arhitekture — Level 3 - Container

Dijagram komponenti zumira pojedinacni kontejner, prikazuju¢i komponente unutar

LC\ ALGEBRA https://c4model.com/

C4 model arhitekture — Level 3 - Container

Dijagram koda (npr. UML class diagram) moze se koristiti za zumiranje pojedinacne
komponente, prikazujudi kako je ta komponenta implementirana na razini koda.

cum.bigbnnk.Ib.componem.curebankinglyslem\

® © CoreBankingSystemAdapter

o BankAccount[] getBankAccounts(Customer) |

‘@ACDreBankingSystamAdaplarlmpl
I
L

‘ -

.
/initialises and pools

1..20,"
Y

‘ @ 4CoreBankingSystemConnection

N

v

{A CoreBankingSystemConnection : Response execute(Request) J
Ta—
/ \

'

i .

,creales \ executes lcreples
N i

'

.
¥ A
@ 4 Response @ 4 Request

fromXml() toXml()

4 & /!
' * S

! ")
©ABankAccounlsHaquesl

o Customer customer

’

@ 4BankAccountsResponse

o BankAccount[] accounts

Code View: Internet Banking System - Backend - Core Banking System Adapter
A summary of the implementation details for the Core Banking System Adapter component | Simon Brown | cémeodel.com | License: CCBY 4.0

https://c4model.com/

ALGEBRA

Uloga arhitekta

e Dobar arhitekt:

* razumije potrebe poslovnog modela i zahtjeve projekta.

* svjestan razliCitih tehnickih pristupa u rjeSavanju danog problema.

* vrednuje dobre i loSe strane tih pristupa.

» preslikava potrebe i vrednovane zahtjeve u tehnicki opis arhitekture programske
potpore.

e vodirazvojni tim u oblikovanju i implementaciji.

» koristiti “meke” vjestine kao i tehnicke vjestine.

* Pogled arhitekta na programsku potporu:

e struktura kao skup implementacijskih zahtjeva
* struktura i odnosi elemenata tijekom dinamicke interakcije
e odnosi programskih struktura i okoline

LC\ ALGEBRA

Proces izbora i vrednovanja

* Proces izbora i vrednovanja arhitekture = proces donosenja odluka
* Alternativni stilovi arhitekture programske potpore
— Oblikovanje kao niz odluka
* Dizajner se suceljava s rjeSavanjem niza problema (engl.
* podproblemi ukupnog problema
* VisSe inacica rjesenja
* engl.
* Dizajner donosi odluke (engl.) za rjeSavanje problema
odabir najbolje opcije izmedu vise mogucih rjesenja problema

LC\ ALGEBRA

Donosenje odluka

e ZadonoSenje odluka potrebna znanja:
* zahtjeva
* trenutno oblikovana arhitektura
* raspoloziva tehnologija
* principi oblikovanja i najbolja praksa (engl.)
* dobrarjesSenja iz proslosti
e Zadace donosenja odluka
e postavljanje prioriteta sustava
* dekompozicija sustava
* definiranje svojstava sustava
e postavljanje sustava u kontekst
e cjelovitost sustava
* Tehnicka i netehnicka pitanja su isprepletena!

LC\ ALGEBRA

Prostor oblikovanja

Problem

Arhitekturni

Cdluke

Rjesenje
Arhitekturalne odluke

zahtjevi oblikovanja Arhitektura PP
arhitekture
Y / Detaljno oblikovanje
Zahtjevi /
\|/)
\f Implementacija
I|
V
| -

Prostor oblikovanja

ALGEBRA

Arhitekturalno znacajni zahtjevi

* engl. Architecturally Significant Requirement ASR, Architecture
Drivers
* Neki zahtjevi imaju daleko dublji utjecaj na arhitekturu, a obicno
se definiraju kao arhitekturno znacajni zahtjevi
e jzvedeni su iz funkcionalnih i nefunkcionalnih zahtjeva
* ocijenjeni od dionika obzirom na prioritete i doseg
* uobicajena tri stupnja ocjene
 Stil arhitekture odreduju nefunkcijski zahtjevi, a funkcijski
zahtjevi odreduju instance elemenata definirane tim stilom

ALGEBRA

Svojstva oblikovanja

e Oblikovanje arhitekture
» podjela u podsustave i komponente
* Nacin povezivanja?
* Nacin medudjelovanja?
e Sucelja?
* Oblikovanje klasa
* Oblikovanje korisnickog sucelja
e Oblikovanje algoritma
e zaizraCunavanje, upravljanje...
* Oblikovanje protokola
* komunikacijski protokoli

LC\ ALGEBRA

Principi dobrog oblikovanja

* smanjenje cijene i povecdanje profita
e osiguranje sukladnosti sa zahtjevima
e ubrzanje razvoja i implementacije
| e poboljsanje kvalitete

e Uporabljivosti

* Efikasnosti

* Pouzdanosti

* Lakoce odrzavanja

 Ponovne uporabe

ALGEBRA

Razvoj modela arhitekture

« Zapocinje s grubom skicom arhitekture
¢ zasnovanoj na osnovnim zahtjevima i obrascima uporabe.

» Odreduje temeljne potrebne komponente sustava

* |zabire izmedu raznih stilova arhitekture
| » savjet: nekoliko timova nezavisno radi grubu skicu arhitekture, a potom se
spoje najbolje ideje
 Arhitektura se dopunjava detaljima tako da se:
* identificiraju osnovni nacCini komunikacije i interakcije izmedu komponenata

 odredi kako Ce dijelovi podataka i funkcionalnosti raspodijeliti izmedu
komponenata

» pokusSa identificirati dijelove za ponovnu uporabu
« vrati se na pojedini obrazac uporabe i podesi arhitekturu

LC\ ALGEBRA

Razvoj modela arhitekture

» Za izradu modela potreban je jezik i sintaksna pravila

- UML:
dijagrami razreda
dijagrami komponenti
dijagram razmjestaja

ALGEBRA

UML Class dijagram

Sto je UML Class Diagram?

User

Strukturni statiCki dijagram koji prikazuje klase (razrede), njihove atribute, operacije i
odnose medju njima.

id: Long, username: String, email: String

;) ;) . R R e . login(): boolean, logout(): void
Razrede i svojstva, atribute i operacije, odnose poput asocijacije i nasljedivanja, sucelja i enumeracije

Primjer UML klase
Alati: Astah, Visual Paradigm, draw.io, PlantUML, Mermaid

ALGEBRA

Razred (klasa)

Sto je razred?

PredloZak za stvaranje objekata koji obuhvaca atribute (obiljezja) i operacije
(ponasanije).

Razred vs. Objekt

Razred Post ima atribute (slika, opis, broj lajkova) i metode (like, share, delete) n j

RAZRED OBJEKT
Nacrt / Predlozak Instanca razreda

private String imageUrl;
private int likes;
public void like() { likes++; }

ALGEBRA

Atributi

 Svojstva (engl. property):
= Vidljivost (engl. visibility)
* Naziv (engl. name)
= Brojnost (engl. multiplicity)
» Vrsta (engl. type)
» PoCetna vrijednost (engl. initial value)
» Ostala svojstva: promjenjivost, modifikatori

[visibility]name[[multiplicity]][:type][=initial value][{property}]
npr. - MyAttribute : string = ,,Hello”;

ALGEBRA

Atributi - vidljivost

 Stupanj vidljivosti atributa
» Public (simbol: +)
- Dostupan svim razredima i paketima

* Private (simbol: -)

- Dostupan samo unutar istog razreda
» Protected (simbol: #)

- Dostupan unutar istog i svih izvedenih razreda (koji nasljeduju glavni razred)
= Package (simbol: ~)

- Dostupan svim razredima unutar paketa

LC\ ALGEBRA

Atributi - promjenjivost

* changeable

- Vrijednost atributa moze se nesmetano mijenjati. Podrazumijevana (defaullt)
postavka — ne mora se posebno naznaciti.

» Rjede koristeni modifikatori*:
« addOnly - vrijednost atributa moze se samo povecavati.
» frozen — vrijednost atributa moze se promijeniti samo jednom tijekom zivota
objekta (u praksi je to kod inicijalizacije)
 read-only — vrijednost atributa ne moze se mijenjati izvan objekta kojemu
pripada.

LC\ ALGEBRA

Atributi — modifikator static

- static
- vrijednost atributa ne ovisi o zivotu objekta - definirana je na razini razreda.
- atributu se pristupa preko naziva razreda (a ne instance!)

- vrijednost moze biti promjenjiva ili konstantna, ovisno o tome koja mu je
promjenjivost dodijeljena

- final (Java) / const (C, C++, C#) — vrijednost atributa je konstantna*

LC\ ALGEBRA

Odgovornost, operacija, metoda

« Odgovornost (eng. responsibility) je nesto sto sustav mora izvrsiti.

» Svaki funkcionalni zahtjev mora se pridijeliti nekom razredu (proizlaze iz obrazaca uporabe).
» Realizira se jednom ili viSe operacija.
« Operacije ostvaruju odgovornosti pojedinog razreda i implementiraju se

metodama:

» vidljivost: public, package, protected, private

modifikatori: static, abstract

istodobnost: sequential, guarded, concurrent

parametri (argumenti)

povratna vrijednost

ALGEBRA

Terminologija
 Member

— Member variable = atribut razreda

* |sto Sto i member data, member field, attribute

* Instance member variable
 vrijednost svojstvena objektu razreda

« Static member variable
 vrijednost zadana na razini razreda

— Member function = operacija razreda

* |sto Sto i operation, method
* Instance member function
« Static member function (class member function)

LC\ ALGEBRA

Odnosi medu razredima (klasama)

Asocijacija Kompozicija (dijamant pun)

"koristi" / "poznaje" "ima" (slaba veza) "sadrzi" (jaka veza)

Nasljedivanje (trokut) Realizacija (isprekidano)

"je vrsta" (1S-A) "implementira" sucelje "ovisi 0" (najslabija)

ALGEBRA

Odnosi medu relacijama

* Asocijacija - Agregacija - Kompozicija
Asocijacija
Agregacija

Kompozicija

LCA ALGEBRA

Asocijacija

Sto je asocijacija?
Veza izmedu dva razreda gdje jedan "poznaje" ili "koristi" drugi. Objekti imaju vlastiti Zivotni
ciklus.

Visestrukost (multiplicity): creates

1 = tocéno jedan, 0..1 = nula ili jedan, * = bilo koliko, 1..* = jedan ili viSe, n..m = izmedu nim

Jednosmijerna: samo User zna za Post. Dvosmjerna: oba razreda znaju jedan za drugog.

private List<Post> posts; // 0..*

ALGEBRA

Nasljedivanje

Sto je nasljedivanje?
- : J Content (abstract)
Koncept gdje podrazred preuzima atribute i metode nadrazreda. Odnos "JE-VRSTA" (IS-A).

extends

Kljucni koncepti:

extends - Java klju€na rijec za nasljedivanje. Polimorfizam - override metoda u podrazredu.
super - poziv metode nadrazreda. abstract - razred koji se ne moze instancirati.

// nasljeduje id, likes, createdAt...
private int duration;

ALGEBRA

Sucelje

Sto je suéelje?

Ugovor koji definira metode koje razred mora implementirati. Nema atribute ni
implementaciju!

Prednosti:

ViSestruka implementacija - razred moze implementirati viSe su€elja. Polimorfizam - isti kod Playable
radi s razlicitim impl. Loose coupling - manja ovisnost. Testabilnost - lak§e mockanije.

implements

void play();

= - e " . . _ . |
V0|d pa use (), Player moze reproducirati bilo $to $to implementira Playable - bez promjene koda!

int getDuration();

ALGEBRA

SOLID principi

S - Single Responsibility

Razred ima samo jedan razlog za promjenu.

Podrazred mora moci zamijeniti nadrazred.

Ovisi o apstrakcijama (suceljima), ne o konkretnim razredima. High-level moduli ne ovise o low-level modulima.

ALGEBRA

O - Open/Closed

Otvoren za proSirenje, zatvoren za modifikaciju.

| - Interface Segregation

Vise manjih sucelja je bolje od jednog velikog.

Lose prakse

Jedan razred radi SVE - 5000+ linija koda, nemoguce za odrzavanje. Wrong Inheritance

Nasljedivanje samo radi code reuse, bez IS-A odnosa.

ck extends ArrayList (krivo!)

Tight Coupling

Razredi previSe ovise jedni o drugima - promjena jednog lomi druge. Public Everything

ey U e (YRS if, Svi atributi public - nema enkapsulacije, bilo tko moze promijeniti stanje.

public String password; (opasno!)

Isti kod na 10 mjesta - bug fix = 10 promjena. Rjesenje: Koristi SOLID principe, code review, refactoring

ALGEBRA

Usporedba dobre i lose prakse

DOBRO - Single Responsibility

create() {}

createUser() {} delete() {}

deleteUser() {}

uploadVideo() {} upload() {}

processPayment() {}

ALGEBRA

Paketi

Sto su paketi?

com.tiktok
users/
User.java
UserService.java
UserRepository.java

Nacin organiziranja razreda koji suraduju ili obavljaju sli¢nu funkcionalnost.

Kljucne rijeci:

com.app.users;
App.Users;

com.app.users.User; Video.java
App.Users; VideoService.java
comments/

Paketi omogucuju (~) package vidljivost - razredi unutar paketa vide jedni druge notlflcatlon S/

ALGEBRA

Paketi

» Razredi koji medusobno suraduju/potrebni su za obavljanje odredenog
skupa funkcionalnosti organiziraju se u pakete.

» Paketi mogu sadrzavati druge razrede i pakete.

» U programskom kodu za deklariranje naziva paketa koriste se kljucne rijeci

namespace (C++ i C#), package (Java).

» Za uvoz paketa koriste se kljucne rijeCi using (C++ i C#) , import (Java).

LC\ ALGEBRA

Paketi - primjer

corm.util. b ojPaket |

A

DrugiPaket |

Java
package com.util.MojPaket;

public class A {}

C++

namespace com {
namespace util {
namespace MojPaket {
namespace DrugiPaket {

class B {};

} I* End of namespace
com.util.MojPaket::DrugiPaket */

} " End of namespace com.util.MojPaket */
} " End of namespace com.util */

} I* End of namespace com */

Java
package com.util.MojPaket.DrugiPaket;

public class B {}

ALGEBRA

Enumeracije

Sto je enumeracija?

Tip podatka koji sadrzi fiksni skup vrijednosti. Koristi se za diskretne, unaprijed poznate

opcije.

Kada koristiti enum? UserType

Status narudzbe: PENDING, PROCESSING, SHIPPED. Tip korisnika: FREE, PREMIUM,
ADMIN. Dani u tjednu, mjeseci, smjerovi... FREE

PREMIUM
CREATOR
ADMIN

DRAFT,
PUBLISHED,

Prednost pred String: kompajler javlja gresku ako upises krivu vrijednost!
UNDER_ REVIEW —

ALGEBRA

Komentari

« UnatocC formalnoj ekspresivnosti UML dijagrama razreda ponekada
su potrebni i komentari.

» Koriste se za dodatni opis svrhe nekog razreda, atributa, veza, metoda i
drugih elemenata dijagrama ukoliko je potrebno.

= U komentarima je pozeljno biti jasan i sazet, te obuhvatiti sve bithe aspekte
UML elementa koji se opisuje, a koji nisu hedvosmisleno jasni iz samog
dijagrama.

b, O
Frimjer kamentara u
Astahu

-

ALGEBRA

‘« Alati za modeliranje

Visual Paradigm

Profesionalni CASE alat, podrska za sve UML dijagrame, code generation Mermaid

Markdown dijagrami, GitHub/GitLab native podrska

Besplatan, web-based, integracija s Google Drive i GitHub IntelliJ IDEA UML

Ugradeno u IDE, generira dijagrame iz koda

PlantUML

® Preporuka za studente: draw.io (besplatan) ili Mermaid (u GitHubu)
Dijagrami iz teksta/koda! Verzioniranje u Gitu, CI/CD integracija

ALGEBRA

Primjeri UML dijagrama

Traffic Violation Report System Example

TrafficPoliceman

1 issues *

TrafficReport

Policeman

id : long
name : String
rank : int

<<abstract>>

id : long
description : String
occuredAt : Date

*

Offender

reports of
18

Violation

id : long
description : String

name : String
id : long

ALGEBRA

Primjeri UML dijagrama

Customer Order
name 1 0.7 | date
address A status
" association N\ calcTax
) calcTotal
abstract class— | Payment | 1. ¥ ' | calcTotalweight
amount 1
) role name -
neralization _ : —
s B ’T lineitem | 1.* <€——— multiplicity
| I I OrderDetail A\ Item < class name
Credit Cash Check , v \ T _
guantity . shippingWeight attributes
number cashTendered name taxStatus - .| description
type hankiD A
expDate calcSubTotal /| getPriceForQuantity _
authorized calcvveight | getieight < operations
authorized
- navigability

ALGEBRA

— Sazetak

EE C4 Model B Suéelja
4 razine: Context — Container — Component — Code Ugovor za implementaciju, omogucuje polimorfizam

b

Razredi, atributi (+/-/#/~), operacije, odnosi

B SOLID principi

S-R-P, O-C-P, L-S-P, I-S-P, D-I-P

& Odnosi X

Asocijacija (—), Agregacija (¢), Kompozicija (#), Nasljedivanje (©>) God Class, Tight Coupling, Copy-Paste, Public Everything

@ Cilj: Dobra arhitektura = manji troskovi, lak$e odrzavanje, sretni developeri!

ALGEBRA

ALGEBRA

Dodatni resursi:

c4model.com, uml-diagrams.org, refactoring.guru

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46

