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Od zahtjeva do koda

ZAHTJEVI

Sto sustav treba raditi?

→
ARHITEKTURA

Kako je sustav strukturiran?

→
KOD

Implementacija rjesenja

Problem:

Veliki raskorak izmedu problema i rjesenja - arhitektura premoscuje taj jaz!

Uvod



Level 1: Context Diagram - Spotify

Oblikovanje arhitekture programske potpore

• Proces identificiranja i strukturiranja podsustava koji 
čine cjelinu te okruženja za upravljanje i komunikaciju 
između podsustava
• rezultat procesa oblikovanja je opis/dokumentacija 

arhitekture programske potpore.



Zasto je arhitektura vazna?

Smanjuje troškove

Cijena razvoja i održavanja pada kad je struktura jasna od početka

Razjašnjava zahtjeve

Prisiljava tim da jasno definira što sustav treba raditi

Rano otkrivanje grešaka

Greška u arhitekturi je skupa – bitno rano otkrivanje

Omogućuje re-use

Dobro strukturirane komponente možeš koristiti u drugim projektima

Poboljšava komunikaciju

Dijagrami su bolji od tisuće rijeci za nove članove tima

Olakšava skaliranje

TikTok ima milijardu korisnika - to je rezultat dobre arhitekture

Prednosti definiranja arhitekture



C4 Model - Pregled

C4 model je način vizualizacije softverske arhitekture na 4 razine apstrakcije - 

kao Google Maps za kod!

Level 1: Context - Tko koristi sustav?

Level 2: Container - Koji su glavni dijelovi?

Level 3: Component - Što je unutar dijelova?

Level 4: Code - Kako izgleda kod (UML)?

Google Maps vam pokazuje Hrvatsku, Zagreb, centar, pa ulicu - isto kao C4!

Level 1: Context

↓

Level 2: Container

↓

Level 3: Component

↓

Level 4: Code (UML)

C4 model arhitekture



Level 1: Context Diagram - Spotify

Pokazuje tko koristi sustav i s kojim vanjskim sustavima 

komunicira.

Primjer: Spotify

Korisnici: slusatelji, umjetnici

Vanjski sustavi: Facebook, PayPal, glazbene kuce

Pitanje: Tko koristi ovaj sustav i sa čime komunicira?

Slušatelj Umjetnik

Spotify - Music Streaming

Facebook Login PayPal Music Labels

C4 model arhitekture



Level 1: Context Diagram - SpotifyC4 model arhitekture – Level 1- Context

https://c4model.com/

Dijagram konteksta sustava pruža početnu točku, pokazujući kako se softverski sustav u 

opsegu uklapa u svijet oko sebe.



Level 1: Context Diagram - SpotifyC4 model arhitekture – Level 2 - Container

https://c4model.com/

Dijagram kontejnera zumira softverski sustav u opsegu, prikazujući aplikacije i pohrane 

podataka unutar njega.



Level 1: Context Diagram - SpotifyC4 model arhitekture – Level 3 - Container

https://c4model.com/

Dijagram komponenti zumira pojedinačni kontejner, prikazujući komponente unutar 

njega.



Level 1: Context Diagram - SpotifyC4 model arhitekture – Level 3 - Container

https://c4model.com/

Dijagram koda (npr. UML class diagram) može se koristiti za zumiranje pojedinačne 

komponente, prikazujući kako je ta komponenta implementirana na razini koda.



Level 1: Context Diagram - Spotify

Uloga arhitekta
• Dobar arhitekt:

• razumije potrebe poslovnog modela i zahtjeve projekta.

• svjestan različitih tehničkih pristupa u rješavanju danog problema.

• vrednuje dobre i loše strane tih pristupa.

• preslikava potrebe i vrednovane zahtjeve u tehnički opis arhitekture programske 

potpore.

• vodi razvojni tim u oblikovanju i implementaciji.

• koristiti “meke” vještine kao i tehničke vještine.

• Pogled arhitekta na programsku potporu:
• struktura kao skup implementacijskih zahtjeva

• struktura i odnosi elemenata tijekom dinamičke interakcije

• odnosi programskih struktura i okoline



Level 1: Context Diagram - Spotify

Proces izbora i vrednovanja
• Proces izbora i vrednovanja arhitekture  proces donošenja odluka
• Alternativni stilovi arhitekture programske potpore 

 Oblikovanje kao niz odluka 
• Dizajner se sučeljava s rješavanjem niza problema (engl. design issues)

• podproblemi ukupnog problema
• Više inačica rješenja 

• engl. design options
• Dizajner donosi odluke (engl. design decision) za rješavanje problema

odabir najbolje opcije između više mogućih rješenja problema



Level 1: Context Diagram - Spotify

Donošenje odluka
• Za donošenje odluka potrebna znanja:

• zahtjeva
• trenutno oblikovana arhitektura
• raspoloživa tehnologija 
• principi oblikovanja i najbolja praksa (engl. best practices) 
• dobra rješenja iz prošlosti 

• Zadaće donošenja odluka
• postavljanje prioriteta sustava
• dekompozicija sustava
• definiranje svojstava sustava
• postavljanje sustava u kontekst
• cjelovitost sustava

• Tehnička i netehnička pitanja su isprepletena!



Level 1: Context Diagram - Spotify

Prostor oblikovanja



Level 1: Context Diagram - Spotify

Arhitekturalno značajni zahtjevi

• engl. Architecturally Significant Requirement ASR, Architecture 
Drivers

• Neki zahtjevi imaju daleko dublji utjecaj na arhitekturu, a obično 
se definiraju kao arhitekturno značajni zahtjevi
• izvedeni su iz funkcionalnih i nefunkcionalnih zahtjeva
• ocijenjeni od dionika obzirom na prioritete i doseg

• uobičajena tri stupnja ocjene 
• Stil arhitekture određuju nefunkcijski zahtjevi, a funkcijski 

zahtjevi određuju instance elemenata definirane tim stilom



Level 1: Context Diagram - Spotify

Svojstva oblikovanja
• Oblikovanje arhitekture 

• podjela u podsustave i komponente
• Način povezivanja?
• Način međudjelovanja?
• Sučelja? 

• Oblikovanje klasa
• Oblikovanje korisničkog sučelja 
• Oblikovanje algoritma 

• za izračunavanje, upravljanje…
• Oblikovanje protokola 

• komunikacijski protokoli



Level 1: Context Diagram - Spotify

Principi dobrog oblikovanja

• Cilj: 
• smanjenje cijene i povećanje profita
• osiguranje sukladnosti sa zahtjevima 
• ubrzanje razvoja i implementacije
• poboljšanje kvalitete

• Uporabljivosti
• Efikasnosti
• Pouzdanosti
• Lakoće održavanja
• Ponovne uporabe



Level 1: Context Diagram - Spotify

Razvoj modela arhitekture
• Započinje s grubom skicom arhitekture 

• zasnovanoj na osnovnim zahtjevima i obrascima uporabe.

• Određuje temeljne potrebne komponente sustava

• Izabire između raznih stilova arhitekture 
• savjet: nekoliko timova nezavisno radi grubu skicu arhitekture, a potom se 

spoje najbolje ideje

• Arhitektura se dopunjava detaljima tako da se:
• identificiraju osnovni načini komunikacije i interakcije između komponenata

• odredi kako će dijelovi podataka i funkcionalnosti raspodijeliti između 
komponenata

• pokuša identificirati dijelove za ponovnu uporabu 

• vrati se na pojedini obrazac uporabe i podesi arhitekturu



Level 1: Context Diagram - Spotify

Razvoj modela arhitekture

• Za izradu modela potreban je jezik i sintaksna pravila 

➔ UML:

dijagrami razreda

dijagrami komponenti

dijagram razmještaja



UML Dijagram razreda

što je UML Class Diagram?

Strukturni statički dijagram koji prikazuje klase (razrede), njihove atribute, operacije i 

odnose medju njima.

Prikazuje:

Razrede i svojstva, atribute i operacije, odnose poput asocijacije i nasljeđivanja, sučelja i enumeracije

Alati: Astah, Visual Paradigm, draw.io, PlantUML, Mermaid

User

id: Long, username: String, email: String

login(): boolean, logout(): void

Primjer UML klase

UML Class dijagram



Razred (Class)

Što je razred?

Predložak za stvaranje objekata koji obuhvaća atribute (obilježja) i operacije 

(ponašanje).

Instagram primjer:

Razred Post ima atribute (slika, opis, broj lajkova) i metode (like, share, delete)

public class Post {

private String imageUrl;

private int likes;

public void like() { likes++; }

}

Razred vs. Objekt

RAZRED

Nacrt / Predlozak

OBJEKT

Instanca razreda

Kao recept vs. gotovo jelo

Razred (klasa)



Level 1: Context Diagram - Spotify

Atributi

• Svojstva (engl. property):

▪ Vidljivost (engl. visibility)

▪ Naziv (engl. name)

▪ Brojnost (engl. multiplicity)

▪ Vrsta (engl. type)

▪ Početna vrijednost (engl. initial value)

▪Ostala svojstva: promjenjivost, modifikatori

[visibility]name[[multiplicity]][:type][=initial value][{property}]

npr. – MyAttribute : string = „Hello”;



Level 1: Context Diagram - Spotify

Atributi - vidljivost
• Stupanj vidljivosti atributa

▪ Public (simbol: + )

- Dostupan svim razredima i paketima 

▪ Private (simbol: - )

- Dostupan samo unutar istog razreda

▪ Protected (simbol: #)

- Dostupan unutar istog i svih izvedenih razreda (koji nasljeđuju glavni razred)

▪ Package (simbol: ~ )

- Dostupan svim razredima unutar paketa



Level 1: Context Diagram - Spotify

Atributi - promjenjivost
• changeable

- Vrijednost atributa može se nesmetano mijenjati. Podrazumijevana (default) 
postavka – ne mora se posebno naznačiti.

• Rjeđe korišteni modifikatori*:

• addOnly - vrijednost atributa može se samo povećavati.

• frozen – vrijednost atributa može se promijeniti samo jednom tijekom života 
objekta (u praksi je to kod inicijalizacije)

• read-only – vrijednost atributa ne može se mijenjati izvan objekta kojemu 
pripada.



Level 1: Context Diagram - Spotify

Atributi – modifikator static
• static

- vrijednost atributa ne ovisi o životu objekta - definirana je na razini razreda. 

- atributu se pristupa preko naziva razreda (a ne instance!)

- vrijednost može biti promjenjiva ili konstantna, ovisno o tome koja mu je 

promjenjivost dodijeljena 

- final (Java) / const (C, C++, C#) – vrijednost atributa je konstantna*



Level 1: Context Diagram - Spotify

Odgovornost, operacija, metoda
• Odgovornost (eng. responsibility) je nešto što sustav mora izvršiti.

▪ Svaki funkcionalni zahtjev mora se pridijeliti nekom razredu (proizlaze iz obrazaca uporabe).

▪ Realizira se jednom ili više operacija.

• Operacije ostvaruju odgovornosti pojedinog razreda i implementiraju se 

metodama: 

▪ vidljivost: public, package, protected, private

▪ modifikatori: static, abstract

▪ istodobnost: sequential, guarded, concurrent

▪ parametri (argumenti)

▪ povratna vrijednost



Level 1: Context Diagram - Spotify

Terminologija
• Member

 
– Member variable = atribut razreda

• Isto što i member data, member field, attribute
• Instance member variable 

• vrijednost svojstvena objektu razreda

• Static member variable
• vrijednost zadana na razini razreda

– Member function = operacija razreda
• Isto što i operation, method
• Instance member function
• Static member function (class member function)



Odnosi medju razredima

Asocijacija

"koristi" / "poznaje"

User koristi Post

Agregacija (dijamant prazan)

"ima" (slaba veza)

Playlist ima Song

Kompozicija (dijamant pun)

"sadrzi" (jaka veza)

Order sadrzi OrderItem

Nasljedivanje (trokut)

"je vrsta" (IS-A)

Admin je vrsta User

Realizacija (isprekidano)

"implementira" sucelje

UserService impl IUserService

Ovisnost (isprekidano)

"ovisi o" (najslabija)

Controller ovisi o DTO

Odnosi među razredima (klasama)



Level 1: Context Diagram - Spotify
Odnosi među relacijama

• Asocijacija - Agregacija - Kompozicija

Asocijacija

Agregacija

Kompozicija



Asocijacija

Što je asocijacija?

Veza između dva razreda gdje jedan "poznaje" ili "koristi" drugi. Objekti imaju vlastiti životni 

ciklus.

Viseštrukost (multiplicity):

1 = tocčno jedan, 0..1 = nula ili jedan, * = bilo koliko, 1..* = jedan ili više, n..m = između n i m

public class User {

private List<Post> posts; // 0..*

}

Instagram primjer

User

creates

1 -------- *
Post

Jedan user kreira 0 ili više postova

Jednosmjerna: samo User zna za Post. Dvosmjerna: oba razreda znaju jedan za drugog.

Asocijacija



Nasljedivanje (Inheritance)

Sto je nasljeđivanje?

Koncept gdje podrazred preuzima atribute i metode nadrazreda. Odnos "JE-VRSTA" (IS-A).

Kljucni koncepti:

extends - Java ključna rijec za nasljeđivanje. Polimorfizam - override metoda u podrazredu. 

super - poziv metode nadrazreda. abstract - razred koji se ne može instancirati.

Java/C# ne podržavaju visestruko nasljedivanje razreda (diamond problem)

TikTok primjer

Content (abstract)

extends

Video Photo Story

public class Video extends Content {

// nasljeduje id, likes, createdAt...

private int duration;

}

Nasljeđivanje



Sucelja (Interfaces)

Što je sučelje?

Ugovor koji definira metode koje razred mora implementirati. Nema atribute ni 

implementaciju!

Prednosti:

Višestruka implementacija - razred moze implementirati više sučelja. Polimorfizam - isti kod 

radi s razlicitim impl. Loose coupling - manja ovisnost. Testabilnost - lakše mockanje.

public interface Playable {

void play();

void pause();

int getDuration();

}

Spotify primjer - Polimorfizam

<<interface>>

Playable

implements

Song Podcast Audiobook

Player moze reproducirati bilo što što implementira Playable - bez promjene koda!

Sučelje



Dobre prakse - SOLID principi

S - Single Responsibility

Razred ima samo jedan razlog za promjenu.

UserService - samo user logika

O - Open/Closed

Otvoren za proširenje, zatvoren za modifikaciju.

Dodaj novu impl. sucelja, ne mijenjaj staro

L - Liskov Substitution

Podrazred mora moci zamijeniti nadrazred.

Square ne smije extendati Rectangle

I - Interface Segregation

Vise manjih sučelja je bolje od jednog velikog.

Playable, Downloadable, Shareable

D - Dependency Inversion

Ovisi o apstrakcijama (sučeljima), ne o konkretnim razredima. High-level moduli ne ovise o low-level modulima.

Controller ovisi o IUserService, ne o UserServiceImpl

SOLID principi



Lose prakse - Antipatterns

God Class / Spaghetti

Jedan razred radi SVE - 5000+ linija koda, nemoguce za odrzavanje.

AppManager.java - 10000 linija

Tight Coupling

Razredi previše ovise jedni o drugima - promjena jednog lomi druge.

new UserService(new MySQLDB())

Copy-Paste Programming

Isti kod na 10 mjesta - bug fix = 10 promjena.

DRY princip: Don't Repeat Yourself

Wrong Inheritance

Nasljeđivanje samo radi code reuse, bez IS-A odnosa.

Stack extends ArrayList (krivo!)

Public Everything

Svi atributi public - nema enkapsulacije, bilo tko može promijeniti stanje.

public String password; (opasno!)

Rjesenje: Koristi SOLID principe, code review, refactoring

Loše prakse



Primjer: Lose vs. Dobro

LOSE - God Class

class AppManager {

// User stuff

createUser() {}

deleteUser() {}

// Video stuff

uploadVideo() {}

// Payment stuff

processPayment() {}

// ... 500+ metoda

}

Problemi: Teško testirati, nemoguće za više developera, promjena u jednom dijelu može slomiti drugi

DOBRO - Single Responsibility

class UserService {

create() {}

delete() {}

}

class VideoService {

upload() {}

}

class PaymentService { ... }

class EmailService { ... }

Prednosti: Svaki servis testiran zasebno, vise developera paralelno, jasna odgovornost

Usporedba dobre i loše prakse



Paketi (Packages)

Što su paketi?

Nacin organiziranja razreda koji suraduju ili obavljaju sličnu funkcionalnost.

Kljucne rijeci:

package com.app.users; // Java

namespace App.Users; // C#

import com.app.users.User;

using App.Users;

Paketi omogućuju (~) package vidljivost - razredi unutar paketa vide jedni druge

TikTok struktura paketa

com.tiktok

users/

User.java

UserService.java

UserRepository.java

videos/

Video.java

VideoService.java

comments/

notifications/

Paketi



Level 1: Context Diagram - Spotify

Paketi
• Razredi koji međusobno surađuju/potrebni su za obavljanje određenog 

skupa funkcionalnosti organiziraju se u pakete.

▪ Paketi mogu sadržavati druge razrede i pakete.

▪ U programskom kodu za deklariranje naziva paketa koriste se ključne riječi 

namespace (C++ i C#), package (Java).

▪ Za uvoz paketa koriste se ključne riječi using (C++ i C#) , import (Java).



Level 1: Context Diagram - Spotify

Paketi - primjer



Enumeracije (Enums)

Sto je enumeracija?

Tip podatka koji sadrzi fiksni skup vrijednosti. Koristi se za diskretne, unaprijed poznate 

opcije.

Kada koristiti enum?

Status narudžbe: PENDING, PROCESSING, SHIPPED. Tip korisnika: FREE, PREMIUM, 

ADMIN. Dani u tjednu, mjeseci, smjerovi...

public enum VideoStatus {

DRAFT,

PUBLISHED,

REMOVED,

UNDER_REVIEW

}

UML notacija

<<enumeration>>

UserType

FREE

PREMIUM

CREATOR

ADMIN

Prednost pred String: kompajler javlja gresku ako upises krivu vrijednost!

Enumeracije



Level 1: Context Diagram - Spotify

Komentari
• Unatoč formalnoj ekspresivnosti UML dijagrama razreda ponekada 

su potrebni i komentari. 

▪ Koriste se za dodatni opis svrhe nekog razreda, atributa, veza, metoda i 

drugih elemenata dijagrama ukoliko je potrebno.

▪ U komentarima je poželjno biti jasan i sažet, te obuhvatiti sve bitne aspekte 

UML elementa koji se opisuje, a koji nisu nedvosmisleno jasni iz samog 

dijagrama. 



 Alati za modeliranje

Visual Paradigm

Profesionalni CASE alat, podrška za sve UML dijagrame, code generation

visual-paradigm.com

draw.io / diagrams.net

Besplatan, web-based, integracija s Google Drive i GitHub

app.diagrams.net

PlantUML

Dijagrami iz teksta/koda! Verzioniranje u Gitu, CI/CD integracija

plantuml.com

Mermaid

Markdown dijagrami, GitHub/GitLab native podrška

mermaid.js.org

IntelliJ IDEA UML

Ugrađeno u IDE, generira dijagrame iz koda

Ultimate verzija

 Preporuka za studente: draw.io (besplatan) ili Mermaid (u GitHubu)



Level 1: Context Diagram - Spotify

Primjeri UML dijagrama



Level 1: Context Diagram - Spotify

Primjeri UML dijagrama



 Sažetak

 C4 Model

4 razine: Context → Container → Component → Code

 UML Class Diagram

Razredi, atributi (+/-/#/~), operacije, odnosi

 Odnosi

Asocijacija (─), Agregacija (◇), Kompozicija (◆), Nasljeđivanje (▷)

 Sučelja

Ugovor za implementaciju, omogućuje polimorfizam

 SOLID principi

S-R-P, O-C-P, L-S-P, I-S-P, D-I-P

 Izbjegavati

God Class, Tight Coupling, Copy-Paste, Public Everything

 Cilj: Dobra arhitektura = manji troškovi, lakše održavanje, sretni developeri!



Pitanja?

Hvala na pažnji!

Dodatni resursi:

c4model.com, uml-diagrams.org, refactoring.guru

Martin Fowler: UML Distilled, Robert C. Martin: Clean Architecture
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